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Introduction 

•Human can tell what the object is regardless of its 
viewpoint or pose

• Pose illusion for human

• Pose invariant recognition is a difficult task even 
for human on some cases

8
[Kokichi Sugihara: “Ambiguous Cylinder Illusion”]



SVCL

Introduction 

•What about classifier?

– Learn features/embeddings invariant to pose 
transformations
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Introduction

•Classification and retrieval are related

– Learn an embedding 𝑔 𝑥 from the input 𝑥 using CNN 𝑔
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Introduction

•Classification and retrieval are related

– Learn an embedding 𝑔 𝑥 from the input 𝑥 using CNN 𝑔

•But different in terms of 

– their goals

– their training approaches 
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Introduction

•Classification:

– Learn discriminant embedding using feature extractor 𝑔
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Introduction

•Classification:

– Learn discriminant embedding using feature extractor 𝑔

– Additional softmax layer 𝑊 is trained on top of 𝑔

– Posterior probability 𝑃𝑌|𝑋 𝑦 𝑥 =
𝑒𝑤𝑦

𝑇𝑔 𝑥

σ𝑘=1
𝐶 𝑒𝑤𝑘

𝑇𝑔 𝑥
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Introduction

•Classification:

– The learned embeddings from different classes are across 
decision boundary
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Introduction

•Classification:

– The learned embeddings from different classes are across 
decision boundary

– No guarantee that features belong same class are close to 
each other
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Introduction

•Metric learning for retrieval task:

– Inputs from same class have closer distance
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Introduction

•Metric learning for retrieval task:

– Inputs from same class have closer distance

– Inputs from different classes have farther distance

– Train triplets (Positive, Anchor, Negative) with triplet loss
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Introduction

•Metric learning for retrieval task:

– Define 𝑑(𝑥, 𝑦) as the distance of 2 features 𝑥 and 𝑦

– Margin loss ∅ v = max(0,m − v) with some margin m

– Triplet loss 𝐿 𝑥, 𝑥+, 𝑥− = ∅ 𝑑 𝑔 𝑥 , 𝑔 𝑥− − 𝑑 𝑔 𝑥 , 𝑔 𝑥+
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•Metric learning for retrieval task :

– If there are 𝑛 images in the dataset → 𝑂(𝑛3) triplets
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Introduction

•Metric learning for retrieval task :

– If there are 𝑛 images in the dataset → 𝑂(𝑛3) triplets

– Metric learning becomes a difficult problem as it is hard to 
converge

30
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Introduction

•Metric learning for retrieval task :

– Yair et al. proposed to introduce a proxy for each class

• Proxy serves as a concise representation of a class 

– Star 𝑐𝑦 represents the dog class

31[Yair et al, ICCV 2017]
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Introduction

•Metric learning for retrieval task :

– Yair et al. proposed to introduce a proxy for each class

• Proxy serves as a concise representation of a class

– Star 𝑐𝑦 represents the dog class

•No more triplets during training

• Faster convergence
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•Metric learning for retrieval task :

– Minimize proxy loss 𝐿 𝑥, 𝑪 =
𝑒−𝑑(𝑔 𝑥 ,𝑐𝑦)

σ𝑘≠𝑦 𝑒
−𝑑(𝑔 𝑥 ,𝑐𝑘)
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•Metric learning for retrieval task :

– Minimize proxy loss 𝐿 𝑥, 𝑪 =
𝑒−𝑑(𝑔 𝑥 ,𝑐𝑦)

σ𝑘≠𝑦 𝑒
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•Minimize distance of feature 𝑔 𝑥 to its associated class proxy 𝑐𝑦
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•Metric learning for retrieval task :

– Minimize proxy loss 𝐿 𝑥, 𝑪 =
𝑒−𝑑(𝑔 𝑥 ,𝑐𝑦)

σ𝑘≠𝑦 𝑒
−𝑑(𝑔 𝑥 ,𝑐𝑘)

•Minimize distance of feature 𝑔 𝑥 to its associated class proxy 𝑐𝑦

•Maximize distance of feature 𝑔 𝑥 to other class proxies 𝑐𝑘
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•Metric learning for retrieval task :

– Xinwei et al. proposed triplet center loss by replacing 
triplets in triplet loss with proxies
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Introduction

• ImageNet pretrained classifier on a warplane

– Unstable classification output

– Not robust to transformations

• ImageNet

– Lots of images per class

– No dense viewpoints in dataset

•Difficult to collect multiview

data in the real world

48[Deng et al., CVPR 2009]
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Introduction

•Objects can be imaged from any viewpoint in 
synthetic graphic world

•Synthetic dataset

– ModelNet

– ShapeNet

50
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•Synthetic data allows the study of 3D representation

•Hang et al. proposed multiview CNN (MVCNN)

– Extract embedding of each view with CNN

– Aggregate multiple embeddings from different views to 
obtain shape embedding
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Introduction

•Synthetic data allows the study of 3D representation

•Hang et al. proposed multiview CNN (MVCNN)

– Extract embedding of each view with CNN

– Aggregate multiple embeddings from different views to 
obtain shape embedding

– Perform classification and retrieval tasks with the shape 
embedding
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•MVCNN performs better then simply averaging 
multiple predictions of CNN
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Motivation

•MVCNN performs better then simply averaging 
multiple predictions of CNN

•Single view representation (e.g CNN)

– Better on single view tasks using view embedding 

– No information about relationship between view 
embeddings from same object

57
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Motivation

•Single view representation (e.g CNN)

– Configuration of view embeddings for 4 objects in 2 classes

– Embeddings of images from different objects but same 
class can interleave with each other

– Not a good embedding for tasks such as retrieving other 
views from same object
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•Multiview representation (e.g MVCNN)

– Multiview representation is better on multiview tasks 
using shape embedding
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Motivation

•Multiview representation (e.g MVCNN)

– Multiview representation is better on multiview tasks 
using shape embedding 

– Shape embedding is an invariant representation of an 
object

– But worse on single view task

– Multiview representation has no constraint between view 
embeddings of same object
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Motivation

•Multiview representation (e.g MVCNN)

– Multiview representation has no constraint between view 
embeddings of same object

– Configuration of shape embeddings for 4 objects in 2 classes

•All shape embeddings are within decision boundary

67
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Motivation

•Multiview representation (e.g MVCNN)

– Multiview representation has no constraint between view 
embeddings of same object

– Configuration of shape embeddings for 4 objects in 2 classes

•All shape embeddings are within decision boundary

– No guarantee that view embedding will be inside the 
decision boundary

68
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Motivation

•Both single view and multiview representation 
have its drawback
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Motivation

•Both single view and multiview representation 
have its drawback

•What if only partial views are given?
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• Pose invariant embedding (PIE) is proposed
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– Different objects from same class close to each other

Class A Class B
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Proposed architecture

• Pose invariant embedding (PIE) is proposed

– Different views from same object close to each other

– Different objects from same class close to each other

•More robust to both multiview and single view 
inference 

Class A Class B
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Proposed architecture

•Define 𝑦 as class label, 𝑣 as view and 𝑠 as shape 

• Probabilistic formulation

– Single View: P𝑌|𝑉(𝑦|𝑣)
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•Define 𝑦 as class label, 𝑣 as view and 𝑠 as shape 

• Probabilistic formulation

– Single View: P𝑌|𝑉(𝑦|𝑣)

– Multiview: P𝑌|𝑆(𝑦|𝑠)
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Proposed architecture

•Define 𝑦 as class label, 𝑣 as view and 𝑠 as shape 

• Probabilistic formulation

– Single View: P𝑌|𝑉(𝑦|𝑣)

– Multiview: P𝑌|𝑆(𝑦|𝑠)

– PIE: P𝑌|𝑉 𝑦 𝑣 = σ𝑠𝑃𝑌|𝑆,𝑉 𝑦 𝑠, 𝑣 𝑃𝑆|𝑉(𝑠|𝑣)
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Proposed architecture

•Shape embedding is an invariant representation of 
an object
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Proposed architecture

•Shape embedding is an invariant representation of 
an object

•Given the object is known, class is independent of 
view
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Proposed architecture

•Shape embedding is an invariant representation of 
an object

•Given the object is known, class is independent of 
view

– PIE: P𝑌|𝑉 𝑦 𝑣 = σ𝑠𝑃𝑌|𝑆,𝑉 𝑦 𝑠, 𝑣 𝑃𝑆|𝑉(𝑠|𝑣) = σ𝑠𝑃𝑌|𝑆 𝑦 𝑠 𝑃𝑆|𝑉(𝑠|𝑣)
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Proposed architecture

•Hierarchical models

– View to object model

•Shape embedding is used for object proxy 

•Make view embedding close to the associated object proxy

81
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Proposed architecture

•Hierarchical models

– View to object model

•Shape embedding is used for object proxy 

•Make view embedding close to the associated object proxy

– Object to class model

•Make object proxy close to the associated class proxy 
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Proposed architecture

•Define 𝑦 as class, 𝑣 as view, 𝑠 as shape and 𝑐𝑦 as 

class proxy 

• Pose invariant distance

– 𝑑𝑖𝑛𝑣 𝑣, 𝑠, 𝑐𝑦 = 𝛼 ∗ 𝑑 𝑣, 𝑠 + 𝛽 ∗ 𝑑(𝑠, 𝑐𝑦)
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Proposed architecture

•Define 𝑦 as class, 𝑣 as view, 𝑠 as shape and 𝑐𝑦 as 

class proxy 

• Pose invariant distance

– 𝑑𝑖𝑛𝑣 𝑣, 𝑠, 𝑐𝑦 = 𝛼 ∗ 𝑑 𝑣, 𝑠 + 𝛽 ∗ 𝑑(𝑠, 𝑐𝑦)

• Take proxy based method for example

– Single view representation

• 𝐿𝑜𝑠𝑠 =
exp(−𝑑(𝑣,𝑐𝑦))

σ𝑖≠𝑦 exp(−𝑑(𝑣,𝑐𝑖))
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• The proposed idea can be incorporated with 
different training approaches

– Proxy

– CNN

– Triplet Center

• Taxonomy of embedding

– Some missing approaches in the literature are found

Proposed architecture
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• 5 different tasks are evaluated

– Classification: 

•Single view classification

•Multiview classification

– Retrieval: 

•Single view object retrieval

•Single view class retrieval

•Multiview class retrieval

Experiment
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• 3 different datasets are evaluated

– ModelNet
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• 3 different datasets are evaluated

– ModelNet

– MIRO

– ObjectPI

• 500 objects

Experiment
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Experiment

• PIEs wins multiview representation on 14 of the 15 
results (5 tasks x 3 approaches) on ModelNet
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Experiment

• PIEs wins single view representation on 11 of the 
15 results (5 tasks x 3 approaches) on ModelNet
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Experiment

• Training with view augmentation

– Different number of views are provided to classifier 
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Experiment

• PIEs wins view augmentation training on 10 of the 
15 results (5 tasks x 3 approaches) on ModelNet
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Experiment

•Ablation study of pose invariant distance

– As 𝜶 increase, results of single view tasks become better

– As 𝜶 increase, results of multiview tasks become worse
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Experiment

•Classification accuracy to number of views provided 
during inference time

– PIE is more robust to the number of views provided

CNN based methods
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Experiment

•Classification accuracy to number of views provided 
during inference time

– PIE is more robust to the number of views provided

Triplet center based methods
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Experiment

•Retrieval results using CNN based embeddings on 
MIRO dataset
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Experiment
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Conclusion

• Propose a taxonomy of embeddings that connects 
different metric learning approaches
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Conclusion

• Propose a taxonomy of embeddings that connects 
different metric learning approaches

• Introduce pose invariant embedding (PIE) that 
can be applied to existing approaches

• PIE is a hierarchical model

– View to object

– Object to class

•Demonstrate the robustness of PIEs on 

– Classification and retrieval tasks

– Single view and multiview inference

• Propose a multiview dataset with real objects 
imaged under complex backgrounds
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Publication

• PIEs: Pose Invariant Embeddings
– Chih-Hui Ho, Pedro Morgado , Amir Persekian, Nuno Vasconcelos In, IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, June 
2019

• Catastrophic Child 's Play: Easy to Perform, Hard to Defend 
Adversarial Attacks
– Chih-Hui Ho*, Brandon Leung*, Erik Sandstrom, Yen Chang, Nuno Vasconcelos

In, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long 
Beach, June 2019
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