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Introduction

e Human can tell what the object is regardless of its
viewpoint or pose

e Pose illusion for human

e Pose invariant recognition is a difficult task even
for human on some cases

[Kokichi Sugihara: “Ambiguous Cylinder Illusion”] SVC L ‘“% UCSD



Introduction

e \What about classifier?

— Learn features/embeddings invariant to pose
transformations

[Kokichi Sugihara: “Ambiguous Cylinder Illusion”] SVC L ‘% UCSD
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Introduction

e Convolutional neural networks (CNN) has a huge
impact on computer vision applications

e Some of the main tasks are ™
— Classification i
— Retrieval

Image
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Introduction

e Convolutional neural networks (CNN) has a huge
impact on computer vision applications

£

e Some of the main tasks are
— Classification
— Retrieval

Face
Database
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Introduction

e Classification and retri

eval are related

- Learn an embedding g(x) from the input x using CNN g

Input

SVC

Embedding
\
CNN g m—->
//////////
g(x)
L<=UCSD 18



Introduction

e Classification and retrieval are related
— Learn an embedding g(x) from the input x using CNN g

e But different in terms of
— their goals
— their training approaches

Embedding
\
CNNg >
/
X g(x)
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Introduction

e Classification:
— Learn discriminant embedding using feature extractor g

CNN

Person

20

SVCL=UCSD

20



Introduction

e Classification:
— Learn discriminant embedding using feature extractor g
— Additional softmax layer W is trained on top of g
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Introduction

e Classification:
— Learn discriminant embedding using feature extractor g
— Additional softmax layer W is trained on top of g

ewgg(x)
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CNN
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Introduction

e Classification:

— The learned embeddings from different classes are across
decision boundary

.~

. Decision
.~ boundary
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Introduction

e Classification:

— The learned embeddings from different classes are across
decision boundary

— No guarantee that features belong same class are close to
each other

.~

Decision
boundary

Person
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Introduction

e Metric learning for retrieval task:
— Inputs from same class have closer distance

Closer
gx*t) T

Positive x* g(x)

Farther
Anchor x

Negative x~ ‘.. =

g(x™)
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Introduction

e Metric learning for retrieval task:
— Inputs from same class have closer distance
— Inputs from different classes have farther distance

Closer
gx*t) T

g(x)

Positive x*
Jry P Farther
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Introduction

e Metric learning for retrieval task:
— Inputs from same class have closer distance
— Inputs from different classes have farther distance
— Train triplets (Positive, Anchor, Negative) with triplet loss

Closer
gx*t) T

Positive x™ g(x)

e Farther
Anchor x [ L.

Negative x~ ‘\ ~ -

g(x™)

27

SVCL=UCSD



Introduction

e Metric learning for retrieval task:
— Define d(x,y) as the distance of 2 features x and y
— Margin loss @(v) = max(0,m — v) with some margin m

~ Triplet loss L(x,x*,x™) = ¢ (d(g(x):g(x_)) - d(g(x)'g(x+)))

Closer
gx*t) T

Positive x™ g(x)

e Farther
Anchor x L%

Negative x~ ‘., ~ -

g(x™)
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Introduction

e Metric learning for retrieval task :
— If there are n images in the dataset - 0(n?) triplets
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Introduction

e Metric learning for retrieval task :
— If there are n images in the dataset > 0(n?) triplets

— Metric learning becomes a difficult problem as it is hard to
converge
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Introduction

e Metric learning for retrieval task :

- Yair et al. proposed to introduce a proxy for each class

e Proxy serves as a concise representation of a class
— Star c,, represents the dog class

Dogs * Class proxy
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Introduction

e Metric learning for retrieval task :

— Yair et al. proposed to introduce a proxy for each class

e Proxy serves as a concise representation of a class
— Star c,, represents the dog class

e No more triplets during training
e Faster convergence

* Class proxy

—

People

g(x)

[Yair et al, ICCV 2017] SVCL=UCSD 32



Introduction

e Metric learning for retrieval task :

L o—d(g(x).cy)
— Minimize proxy loss L(x,C) =

Dogs

g(x)

T reey € GGCICK)

* Class proxy

People

[Yair et al, ICCV 2017] SVCL=UCSD
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Introduction

e Metric learning for retrieval task :

o—d(g(0),cy)

— Minimize proxy | Lx,C) = — ==
e proxy loss L(x, C) Tsy e~

e Minimize distance of feature g(x) to its associated class proxy c,,

Closer * Class proxy

—

People

g(x)
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Introduction

e Metric learning for retrieval task :

— Minimize proxy | L(x,C) = ———
e proxy loss L(x, C) Zkiye—d(g(x),ck)

e Minimize distance of feature g(x) to its associated class proxy c,
e Maximize distance of feature g(x) to other class proxies ¢

Closer * Class proxy

—

g(x) \
Farther

[Yair et al, ICCV 2017] SVCL=UCSD 35
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Introduction

e Metric learning for retrieval task :

— Xinwei et al. proposed triplet center loss by replacing
triplets in triplet loss with proxies

Closer * Class proxy
Cy

—

g(x) \
Farther

[Xinwei et al., CVPR 2018] SVCL=UCSD 36
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Introduction

e Metric learning for retrieval task :
— Margin loss @(v) = max(0,m — v) with some margin m

— Triplet loss L(x,x*,x™) = @ (d(g(x),g(x‘)) - d(g(x),g(x+)))
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Introduction

e Metric learning for retrieval task :
— Margin loss @(v) = max(0,m — v) with some margin m

Friplettoss + =) - +
) ) ) )

- Triplet center loss L(x,C) = ¢ (rlpii;ld(g(x}ck) —d(g(), Cy))

Closer * Class proxy
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—
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Introduction

e Metric learning for retrieval task :
— Margin loss @(v) = max(0,m — v) with some margin m

Friptettoss-Liext x=) = 9(4(9@;) - +
) ) ) )

— Triplet center loss L(x,C) = @ (rlgtijr}d(g(X),-C_k.l —d(g(), cy)>

Closer * Class proxy
Cy

—

g(x) \
Farther

[Xinwei et al., CVPR 2018] SVCL=UCSD 39
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Introduction

e Metric learning for retrieval task :
— Margin loss @(v) = max(0, m —v) with some margin m

—Triptettoss-LGe st =) _mf G — g e gt

\
J

F

— Triplet center loss L(x, C) = (mln d(g(x), cr) — d(g(x)C_yI)

Closer * Class proxy

—

g(x) \
Farther

[Xinwei et al., CVPR 2018] SVCL=UCSD 40
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e Generating an embedding for different tasks is
challenging
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e Generating an embedding for different task is
challenging

e Transformations make it more complicated
— Lighting
— Viewpoint
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Introduction

e Generating an embedding for different task is
challenging

e Transformations make it more complicated
— Lighting
— Viewpoint
- Depth
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Introduction

e ImageNet pretrained cIaSS|f|er on a warplane
— Unstable classification output | ' A1
— Not robust to transformations

[Deng et al., CVPR 2009] SVCL==UCSD
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Introduction

— Unstable classification output ‘Warpila
— Not robust to transformations
e ImageNet

— Lots of images per class
— No dense viewpoints in dataset
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Introduction

e ImageNet pretrained cIaSS|ﬂer on a warplane
— Unstable classification output | ine
— Not robust to transformations

e ImageNet
— Lots of images per class ”
— No dense viewpoints in dataset |

e Difficult to collect multiview |
data in the real world

[Deng et al., CVPR 2009] SVCL==UCSD
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Introduction

e Objects can be imaged from any viewpoint in
synthetic graphic world
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Introduction

e Objects can be imaged from any viewpoint in
synthetic graphic world

e Synthetic dataset
— ModelNet
— ShapeNet
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[Wu et al., CVPR 2015]
[Angel et al., ICCV 2017]
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e Synthetic data allows the study of 3D representation
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Introduction

e Synthetic data allows the study of 3D representation

e Hang et al. proposed multiview CNN (MVCNN)
— Extract embedding of each view with CNN

‘ ' ' | ST : Embedding of view 1
E‘l—’ Embedding of view 2
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Introduction
e Synthetic data allows the study of 3D representation

e Hang et al. proposed multiview CNN (MVCNN)

— Extract embedding of each view with CNN
— Aggregate multiple embeddings from different views to

obtain shape embedding

(
| I
s P = |
Be ‘?‘: pE [> - P\cﬁ)elivr\:g 'L Shape embedding
» t_;—bcnn I
. . I
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Introduction

e Synthetic data allows the study of 3D representation

e Hang et al. proposed multiview CNN (MVCNN)

— Extract embedding of each view with CNN

— Aggregate multiple embeddings from different views to
obtain shape embedding

— Perform classification and retrieval tasks with the shape

embedding
T I Sy,
I \
‘ ' ' &, —¥ cnn I I
E—> em vi | Desk I
<N iew
. NS R [> B — o Pooling || [> Car

I
¢ g > < )

[Hang et al., ICCV 2015] SVCL==UCSD =



Motivation

e MVCNN performs better then simply averaging
multiple predictions of CNN
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Motivation

e MVCNN performs better then simply averaging
multiple predictions of CNN

e Single view representation (e.g CNN)
— Better on single view tasks using view embedding

— No information about relationship between view
embeddings from same object
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Motivation

e Single view representation (e.g CNN)
— Configuration of view embeddings for 4 objects in 2 classes

O N P @ View embedding
® /
e o ® . @ o ©
® / ° .

@ o . --- object 1
/ ® O --- object 2

Decision --- object 3

Class A boundary Class B
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Motivation

e Single view representation (e.g CNN)
— Configuration of view embeddings for 4 objects in 2 classes

— Embeddings of images from different objects but same
class can interleave with each other

@ 3 P @ View embedding
® /
e o ® . @ o ©
® / ° .
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/ ® O --- object 2

Decision --- object 3

Class A boundary Class B
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Motivation

e Single view representation (e.g CNN)
— Configuration of view embeddings for 4 objects in 2 classes

— Embeddings of images from different objects but same
class can interleave with each other

— Not a good embedding for tasks such as retrieving other
views from same object

O . o @ View embedding
® /
° ® ° o o e
o / O ®

@ o . --- object 1
/ ® O --- object 2

Decision --- object 3

Class A boundary Class B
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Motivation

e Multiview representation (e.g MVCNN)

— Multiview representation is better on multiview tasks
using shape embedding
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— Multiview representation is better on multiview tasks
using shape embedding

— Shape embedding is an invariant representation of an
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— But worse on single view task
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Motivation

e Multiview representation (e.g MVCNN)

— Multiview representation is better on multiview tasks
using shape embedding

— Shape embedding is an invariant representation of an
object

— But worse on single view task

— Multiview representation has no constraint between view
embeddings of same object
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Motivation

e Multiview representation (e.g MVCNN)

— Multiview representation has no constraint between view
embeddings of same object

— Configuration of shape embeddings for 4 objects in 2 classes
e All shape embeddings are within decision boundary
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Motivation

e Multiview representation (e.g MVCNN)

— Multiview representation has no constraint between view
embeddings of same object

— Configuration of shape embeddings for 4 objects in 2 classes
¢ All shape embeddings are within decision boundary

— No guarantee that view embedding will be inside the
decision boundary

O
O ,/ O @ View embedding
® - ® O
O 4p / #= Shape embedding
+ * 4

o o / @ ~ bject 1

--- objec
. ® ® O O --- object 2
--- object 3
Class A Y Eereiar Class B
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Motivation

e Both single view and multiview representation
have its drawback

4 . / N\ / ™
/ ° + /
O .. ® ' o oo & * .
) ® 0 /
® o - o,

Class A Decision Class B class A / Declsion Class B
K . boundary j \ + boundary /
Single view Multiview
representation representation
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Motivation

e Both single view and multiview representation
have its drawback

e What if only partial views are given?

ey ] ) P
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Proposed architecture

e Pose invariant embedding (PIE) is proposed
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Proposed architecture

e Pose invariant embedding (PIE) is proposed
— Different views from same object close to each other

® /
o @
O / @4 @
O - °
. Decision
Class A / boundary Class B
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Proposed architecture

e Pose invariant embedding (PIE) is proposed
— Different views from same object close to each other
— Different objects from same class close to each other

® /
o @
o © / @4 @
o+ 0 . O o
O / O
. Decision
Class A / boundary Class B
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Proposed architecture

e Pose invariant embedding (PIE) is proposed
— Different views from same object close to each other
— Different objects from same class close to each other

e More robust to both multiview and single view

iInference
O ./
O N : @
o © / @4 @
@@+ 0® . O oy ®
O / O
. Decision
Class A boundary Class B

,
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Proposed architecture

e Define y as class label, v as view and s as shape

e Probabilistic formulation
- Single View: Py, (y|v)

O S
O /
o " % o oo
O / O ®
@ o
/ oecsion.®
Decision
Class A boundary Class B
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Proposed architecture

e Define y as class label, v as view and s as shape

e Probabilistic formulation
- Single View: Py, (y|v)
— Multiview: Pys(y|s)

/
=7
% _./ *
/
Class A /‘Der.:isinn Class B
- boundary
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Proposed architecture

e Define y as class label, v as view and s as shape

e Probabilistic formulation
- Single View: Py, (y|v)
— Multiview: Pys(yls)
= PIE: Pyy (¥|v) = X5 Pyisy (Vls, v) Pspy (s|v)

® /
O & @ @ View embedding
O / @%@ _
O %= Shape embedding
@, . @ O
o+ @ / S i O --- object 1
O v O --- object 2
Decision --- object 3
Class A boundary Class B
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Proposed architecture

e Shape embedding is an invariant representation of
an object

® /
O ® @ View embedding
* o /] 4@
O %= Shape embedding
O ®@ O
®+ @ / © T O --- Object 1
O O --- object 2
Decision --- object 3
Class A Class B

boundary
SVCL<=UCSD 78



Proposed architecture

e Shape embedding is an invariant representation of

@ View embedding

¥ Shape embedding

--- object 1
--- object 2
--- object 3

an object
e Given the object is known, class is independent of
view
/
o) S e
°o ® / @%@
@, . @ O
o+ 0 / O ®
O ' O
Decision
Class A boundary Class B
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Proposed architecture

e Shape embedding is an invariant representation of
an object

e Given the object is known, class is independent of
view
— PIE: Py (¥[v) = Xs Prisy YIS, v) Py (s|v) = X Pyis(¥[s) Py (s|v)

® /
O & @ @ View embedding
O / @%@ _
O %= Shape embedding
@, . @ O
o+ @ / S i O --- object 1
O v O --- object 2
Decision --- object 3
Class A boundary Class B
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Proposed architecture

PY|V(}’|V) =D PYlS(yls)PSW(Slv)

e Hierarchical models

- View to object model
e Shape embedding is used for object proxy

e Make view embedding close to the associated object proxy

@ View embedding

Shape embedding
(Object Proxy)

—

+ . [ I~
\. --- object 1 -
-- object 2 5 )
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Proposed architecture

PY|V()’|V) = s PY|S(y|S)PS|V(S|v)

e Hierarchical models

- View to object model
e Shape embedding is used for object proxy

e Make view embedding close to the associated object proxy

— Object to class model
e Make object proxy close to the associated class proxy

@ View embedding

Car proxy
e ’k . + Shape embedding
> (Object Proxy)

N

~ ‘ /// f
\\
\ ¥ Class proxy

t,f‘f“\A +/ g .\: :
- \‘ --- object 1 '\'f‘)
-—-object2 & )
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Proposed architecture

e Define y as class, v as view, s as shape and c,, as
class proxy

e Pose invariant distance
- di"”(v, S, cy) =axd(w,s)+ p =d(s,cy)

SVCL=UCSD
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Proposed architecture

e Define y as class, v as view, s as shape and c,, as
class proxy

e Pose invariant distance
- d™(v,s,¢y) = axd(w,s) + B *d(s,cy)

e Take proxy based method for example

— Single view representation

exp(—d(v,cy))
Yixy €xp(-d(v,c)))

e [L,OoSS =
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Proposed architecture

e Define y as class, v as view, s as shape and c,, as
class proxy

e Pose invariant distance
- d™(v,s,¢y) = axd(w,s) + B *d(s,cy)

e Take proxy based method for example

— Single view representation
exp(—d(v,cy))

izy eXP(=d(v,¢))

— Multiview representation

exp(—d(s,cy))
Yixy eXP(—d(5,C)))

e oSS =

e oSS =
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Proposed architecture

e Define y as class, v as view, s as shape and c,, as
class proxy

e Pose invariant distance
- d™(v,s,¢y) = axd(w,s) + B *d(s,cy)

e Take proxy based method for example

— Single view representation

exp(—d(v,cy))
Yixy €xp(-d(v,c)))

— Multiview representation
exp(—d(s,cy))

e oSS =

® LOSS — Zl;t_’y exp(—d(sxci))
- PIE
e Loss = exp(-d'"(v,s,cy))

Ny €XP(—dT (1,5,7))
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Proposed architecture

e Define y as class, v as view, s as shape and c,, as
class proxy

e Pose invariant distance
- d™(v,s,¢y) = axd(w,s) + B *d(s,cy)

e Take proxy based method for example

— Single view representation
exp(—d(v,cy))

izy eXP(=d(v,¢))

— Multiview representation

exp(—d(s,cy))
Y izy €XP(—d(5,C1))

- PIE a=0, =1

exp(—d™v (v.s.cy))
ijry exp(—di™ (v,s,c;))

e oSS =

e oSS =

e oSS =

SVCL=UCSD
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Proposed architecture

e The proposed idea can be incorporated with
different training approaches

— Proxy
Representation
Single Multiview PIE
view
Proxy Existed Missing Proposing
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Proposed architecture

e The proposed idea can be incorporated with
different training approaches

— Proxy
— CNN
Representation
Sipgle Multiview PIE
view
Proxy Existed Missing Proposing
CNN Existed Existed Proposing
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Proposed architecture

e The proposed idea can be incorporated with
different training approaches

— Proxy
— CNN
— Triplet Center

Proxy
CNN
Triplet Center

Representation

Sipgle Multiview PIE
view

Existed Missing Proposing

Existed Existed Proposing

Missing Existed Proposing
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Proposed architecture

e The proposed idea can be incorporated with
different training approaches
— Proxy
- CNN
— Triplet Center

e Taxonomy of embedding
— Some missing approaches in the literature are found

Representation

Sipgle Multiview PIE
view
Proxy Existed Missing Proposing
CNN Existed Existed Proposing
Triplet Center Missing Existed Proposing

Taxonomy of embedding
SVCL=UCSD ot



Experiment

e 5 different tasks are evaluated

— Classification:
e Single view classification

View 1 of car model 1

SVCL=UCSD >



Experiment

e 5 different tasks are evaluated

— Classification:
¢ Single view classification
e Multiview classification

= eEe O
Car model 1 NS View 2 View 3
View 6 View 5 View 4
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Experiment

e 5 different tasks are evaluated

— Classification:
¢ Single view classification
e Multiview classification
— Retrieval:
e Single view object retrieval

- P~y >
-\ 772 TNy

View 1 of car model 1 View 2 View 3 View 4

SVCL=UCSD
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View 5

View 6
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Experiment

e 5 different tasks are evaluated
— Classification:
¢ Single view classification
e Multiview classification
— Retrieval:
e Single view object retrieval
e Single view class retrieval

View 1 of car model 1 Other views of various cars
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Experiment

e 5 different tasks are evaluated

— Classification:
¢ Single view classification
e Multiview classification

— Retrieval:
e Single view object retrieval
¢ Single view class retrieval
e Multiview class retrieval

o

N /,/\‘37 =
&> = s
N, @m@ﬂ \C)ﬁ»'@

!\L,

Car model 1
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Experiment

e 3 different datasets are evaluated
— ModelNet

[Wu et al., CVPR 2015]
SVCL=<=UCSD

97



Experiment

e 3 different datasets are evaluated
— ModelNet
— MIRO

[Asako et al., CVPR 2018]
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Experiment

e 3 different datasets are evaluated
— ModelNet
— MIRO

— ObjectPI
e 500 objects
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Experiment

e PIEs wins multiview representation on 14 of the 15
results (5 tasks x 3 approaches) on ModelNet

Classification (Accuracy) Retrieval (mAP)
) ) ( N\ N )
100 +14.7 +1.14 100 | +7-97 +38.4 +13.6
90 80
CNN 4, ! &0 I I
! 40
70 20 \__H ) J \ J
100 +5.88 -0.27 100 (310 [ +142 Y[ +021 )
Proxy . l I o I I Multiview
]
70\ J 20 J J J
100 +6.54 +0.6 100 r+8.93 3 (+12.9 3 r+0.48 N - PlIE
Triplet 90 28
Center 80 . I 40 I I
70\ ) . ‘ 20 J JAN J
Single  Multiview Object Single Multiview
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Experiment

e PIEs wins single view representation on 11 of the
15 results (5 tasks x 3 approaches) on ModelNet

Classification (Accuracy) Retrieval (mAP)
o N GUR r N
100 +0.85 +1.09 100 -20.9 +37.4 +27 8
. 90 80
60
. \JA \JA 50 J_/ \J_J
70 20 O
100 -0.02 +0.38 100 (003 [ 117 [ +1.22
90 80 .
Proxy . 60 Single
l 0 m view
70 \ ) 20\ J J
100 -1.64 [ +0.63 100 | +135 242 (+02a ) - PIE
Triplet 90 80
60
Center 80 . I 40 m I
70 20 \ )

Single  Multiview Object Single Multiview
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Experiment

e Training with view augmentation
— Different number of views are provided to classifier

v Desk

iew

Pooling }_B [>Car
Be

d

SVCL=UCSD 02



Experiment

e PIEs wins view augmentation training on 10 of the
15 results (5 tasks x 3 approaches) on ModelNet

Classification (Accuracy)

100
90
CNN g
70

100
90
80
70

Proxy

100
Triplet 90

Center 8o
70

)
+3.72

Single
view

Retrieval (mAP)

View

-

e N\ /7 B
-0.87 100 -11.8 +34.6 +20.7
80
40
20 H PAR y
-0.62 100 @ +3.37\ (+4.21 +0.06 )
80
40
20 -J JAR y
e B
-0.21 100 +6.73 +2.9 -0.62
80
40 .
20 AR y
Multiview Object Single Multiview
view
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Experiment 4" (sey)=ardws)+frdsc)

e Ablation study of pose invariant distance
— As a increase, results of single view tasks become better
— As a increase, results of multiview tasks become worse

90

85
Classification &°
(Accuracy) 75 .
20 - a=0 , =1

Single view Multiview

{00 a=0.1, p=1

80

60 - —
Retrieval 40 - a=0.2, f=1
(MAP) 20 I I
0

Object Single view  Multiview
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Experiment 4" (sey)=ardws)+frdsc)

e Ablation study of pose invariant distance
— As a increase, results of single view tasks become better
— As a increase, results of multiview tasks become worse
90

8

Classification &°
(Accuracy) 7 .
20 - a=0 , =1

Single view Multiview

Ul

Ul

{00 a=0.1, p=1

80

60 - —
Retrieval 40 - a=0.2, f=1
(MAP) 20 I I

Object

o

Multiview
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Experiment 4" (sey)=ardws)+frdsc)

e Ablation study of pose invariant distance
— As a increase, results of single view tasks become better
— As a increase, results of multiview tasks become worse
90

8

Classification &°
(Accuracy) 7 .
20 - a=0 , =1

Single view Multiview

Ul
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{00 a=0.1, p=1

80

60 - —
Retrieval 40 - a=0.2, f=1
(MAP) 20 I I

Object Single view §Multiview
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Experiment

e Classification accuracy to number of views provided
during inference time
— PIE is more robust to the number of views provided

(0,90 4

0.88

=
o
(3]

o
]
I

e Single view representation

=
o]
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Multiview representation

=
o
=

Test Accuracy

——— Pose invariant embedding
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0,74

2 4 3] 8 10 12
# of view given in test time

CNN based methods
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Experiment

e Classification accuracy to number of views provided
during inference time
— PIE is more robust to the number of views provided
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——— Pose invariant embedding
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lest Accuracy

Experiment

e Classification accuracy to number of views provided
during inference time
— PIE is more robust to the number of views provided
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Experiment

e Retrieval results using CNN based embeddings on
MIRO dataset
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Experiment

e Retrieval results using CNN based embeddings on
MIRO dataset
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Conclusion

e Propose a taxonomy of embeddings that connects
different metric learning approaches
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Conclusion

e Propose a taxonomy of embeddings that connects
different metric learning approaches

e Introduce pose invariant embedding (PIE) that
can be applied to existing approaches

e PIE is a hierarchical model
- View to object
— Object to class

e Demonstrate the robustness of PIEs on
— Classification and retrieval tasks
— Single view and multiview inference
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Conclusion

e Propose a taxonomy of embeddings that connects
different metric learning approaches

e Introduce pose invariant embedding (PIE) that
can be applied to existing approaches

e PIE is a hierarchical model
- View to object
— Object to class

e Demonstrate the robustness of PIEs on
— Classification and retrieval tasks
- Single view and multiview inference

e Propose a multiview dataset with real objects
imaged under complex backgrounds
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Publication

e PIEs: Pose Invariant Embeddings

— Chih-Hui Ho, Pedro Morgado , Amir Persekian, Nuno Vasconcelos In, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, June
2019

Catastrophic Child 's Play: Easy to Perform, Hard to Defend
Adversarial Attacks

— Chih-Hui Ho*, Brandon Leung*, Erik Sandstrom, Yen Chang, Nuno Vasconcelos
In, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long
Beach, June 2019
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