PIEs: Pose Invariant Embeddings

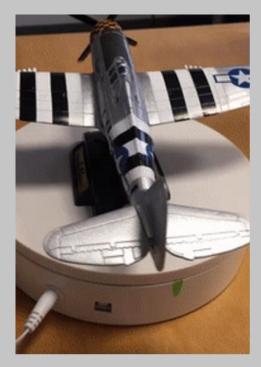
Chih-Hui (John) Ho Advisor: Professor Nuno Vasconcelos

Outline

- Introduction
- Motivation
- Proposed architecture
- Experiment
- Conclusion

Pose Invariant Embeddings

 Human can tell what the object is regardless of its viewpoint or pose



Warplane

SVCL **₹**UCSD

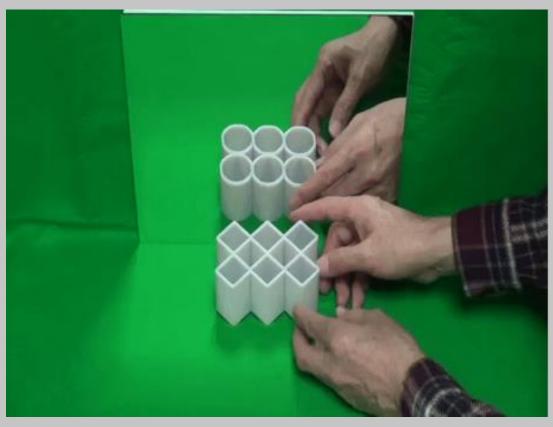
 Human can tell what the object is regardless of its viewpoint or pose



Warplane

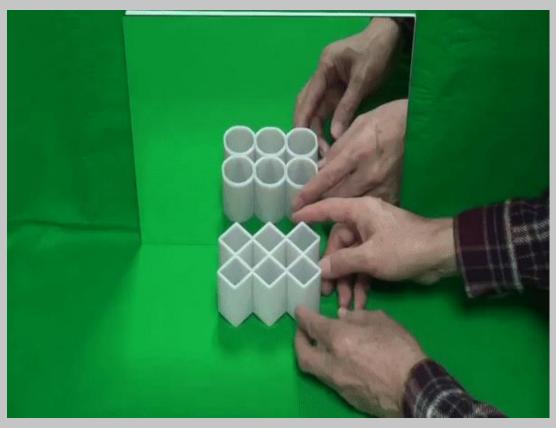
SVCL **₹**UCSD

- Human can tell what the object is regardless of its viewpoint or pose
- Pose illusion for human



[Kokichi Sugihara: "Ambiguous Cylinder Illusion"]

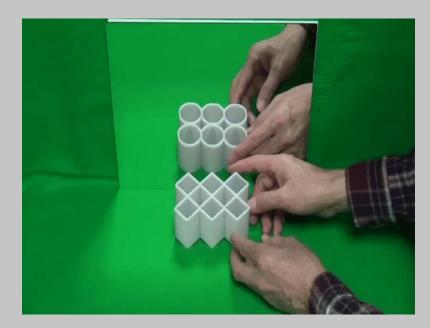
- Human can tell what the object is regardless of its viewpoint or pose
- Pose illusion for human



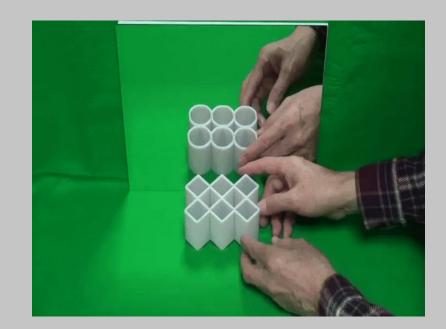
SVCL₹UCSD

[Kokichi Sugihara: "Ambiguous Cylinder Illusion"]

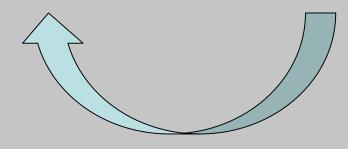
- Human can tell what the object is regardless of its viewpoint or pose
- Pose illusion for human
- Pose invariant recognition is a difficult task even for human on some cases



- What about classifier?
 - Learn features/embeddings invariant to pose transformations



Pose Invariant Embeddings



• Convolutional neural networks (CNN) has a huge impact on computer vision applications

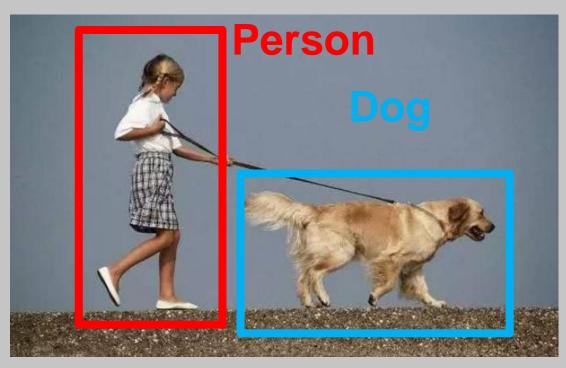
• Convolutional neural networks (CNN) has a huge impact on computer vision applications

Some of the main tasks are

- Classification
- Retrieval

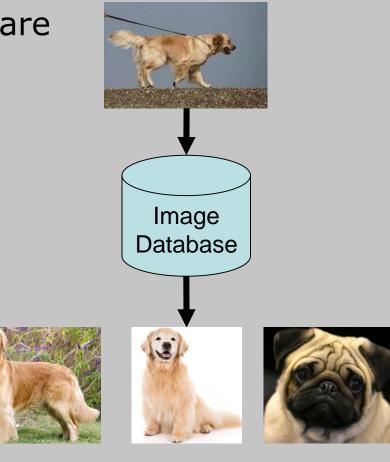
- Convolutional neural networks (CNN) has a huge impact on computer vision applications
- Some of the main tasks are
 - Classification
 - Retrieval

- Convolutional neural networks (CNN) has a huge impact on computer vision applications
- Some of the main tasks are
 - Classification
 - Retrieval



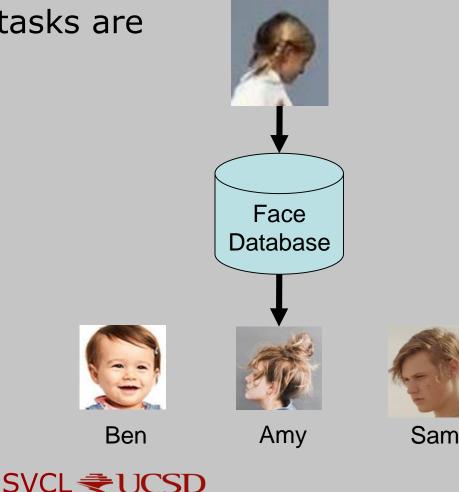
- Convolutional neural networks (CNN) has a huge impact on computer vision applications
- Some of the main tasks are
 - Classification
 - Retrieval

- Convolutional neural networks (CNN) has a huge impact on computer vision applications
- Some of the main tasks are
 - Classification
 - Retrieval



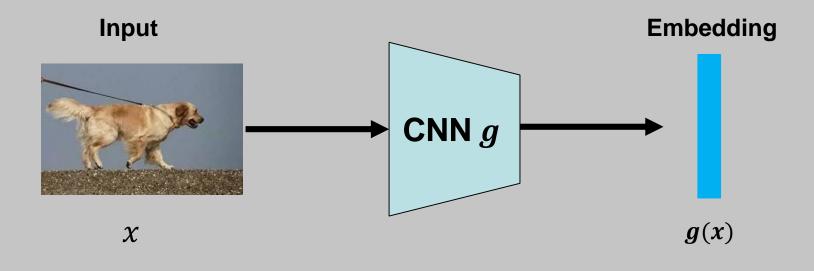
SVCL ₹UCSD

- Convolutional neural networks (CNN) has a huge impact on computer vision applications
- Some of the main tasks are
 - Classification
 - Retrieval



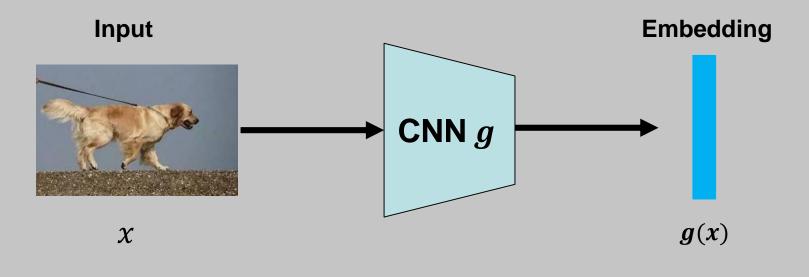
Classification and retrieval are related

– Learn an embedding g(x) from the input x using CNN g



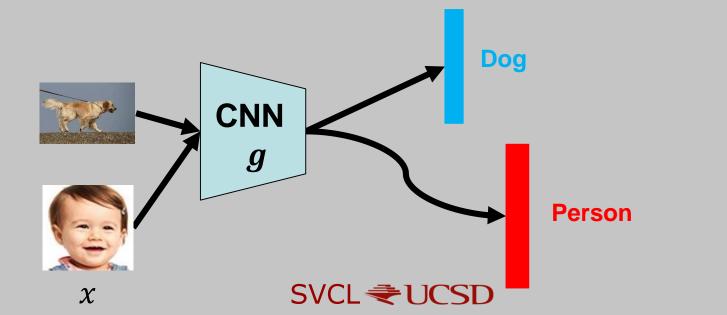
SVCL ₹UCSD

- Classification and retrieval are related
 - Learn an embedding g(x) from the input x using CNN g
- But different in terms of
 - their goals
 - their training approaches

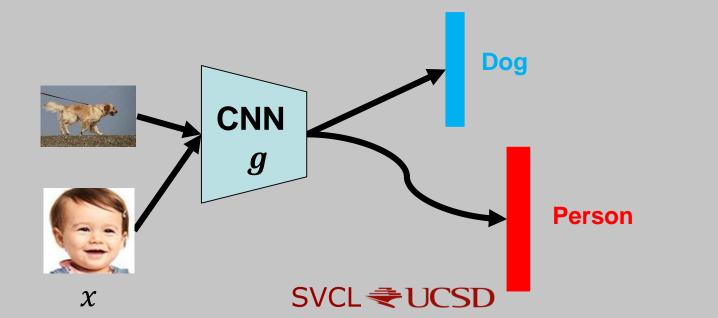


• Classification:

– Learn discriminant embedding using feature extractor \boldsymbol{g}

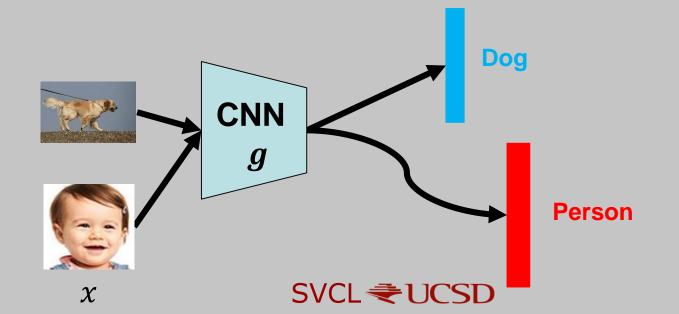


- Classification:
 - Learn discriminant embedding using feature extractor g
 - Additional softmax layer W is trained on top of g

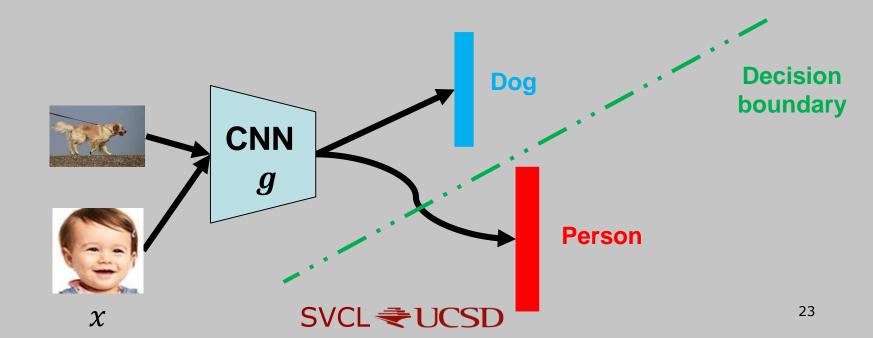


- Classification:
 - Learn discriminant embedding using feature extractor \boldsymbol{g}
 - Additional softmax layer W is trained on top of g

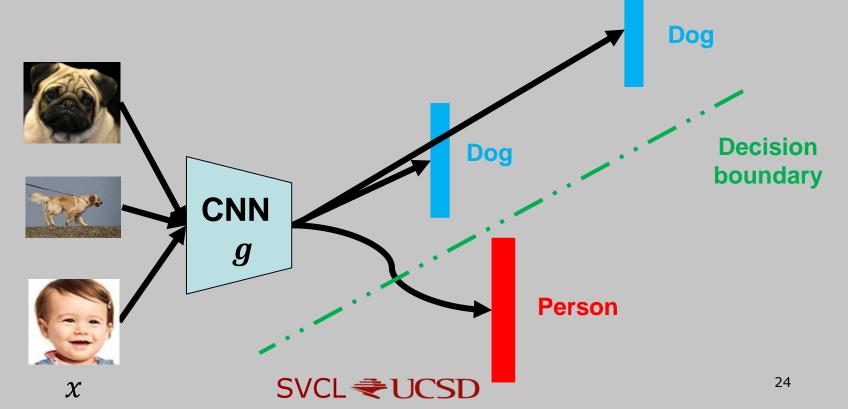
- Posterior probability
$$P_{Y|X}(y|x) = \frac{e^{w_y^T g(x)}}{\sum_{k=1}^{C} e^{w_k^T g(x)}}$$



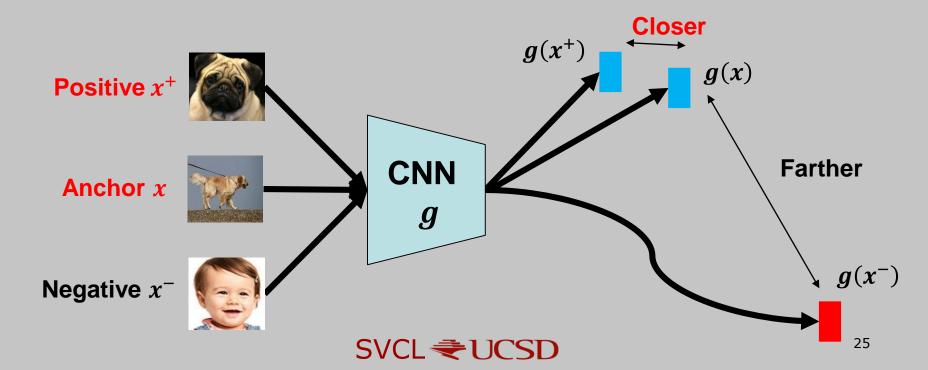
- Classification:
 - The learned embeddings from different classes are across decision boundary



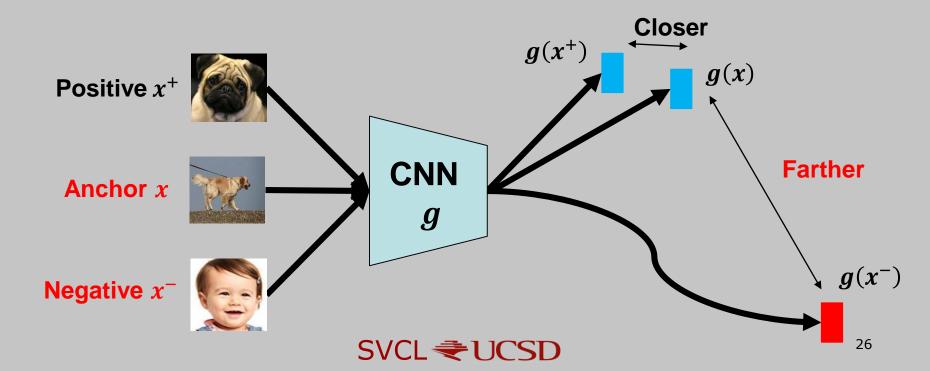
- Classification:
 - The learned embeddings from different classes are across decision boundary
 - No guarantee that features belong same class are close to each other



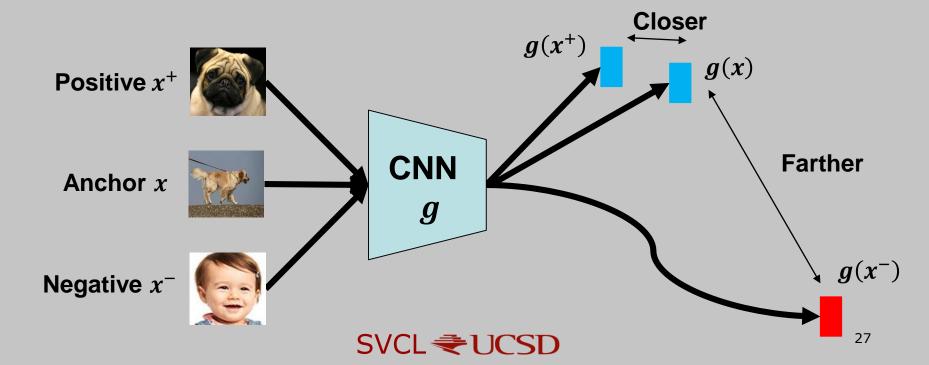
- Metric learning for retrieval task:
 - Inputs from same class have closer distance



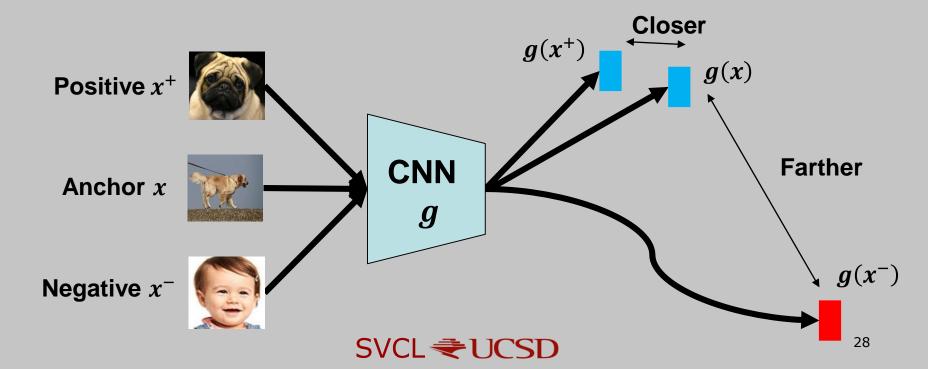
- Metric learning for retrieval task:
 - Inputs from same class have closer distance
 - Inputs from different classes have farther distance



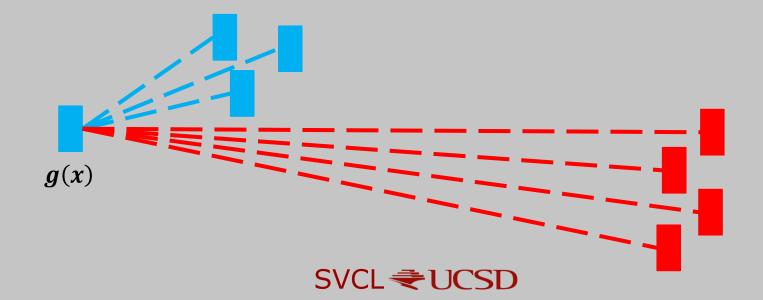
- Metric learning for retrieval task:
 - Inputs from same class have closer distance
 - Inputs from different classes have farther distance
 - Train triplets (Positive, Anchor, Negative) with triplet loss



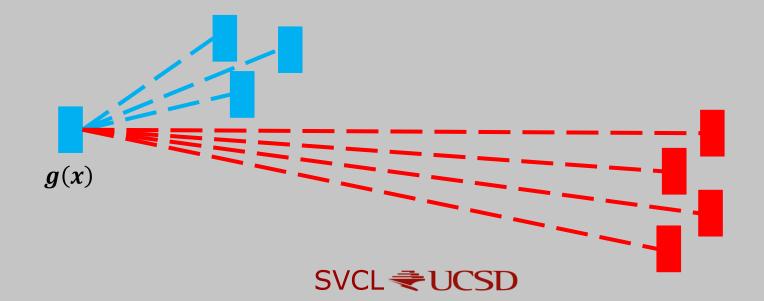
- Metric learning for retrieval task:
 - Define d(x, y) as the distance of 2 features x and y
 - Margin loss $\phi(v) = max(0, m v)$ with some margin m
 - Triplet loss $L(x, x^+, x^-) = \emptyset \left(d(g(x), g(x^-)) d(g(x), g(x^+)) \right)$



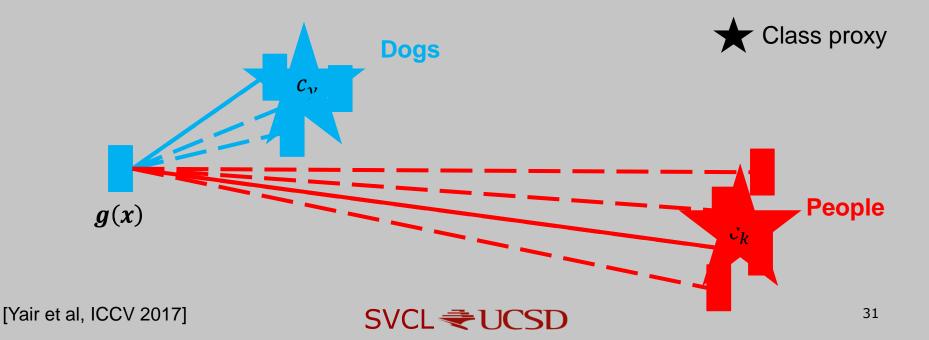
- Metric learning for retrieval task :
 - If there are *n* images in the dataset $\rightarrow O(n^3)$ triplets



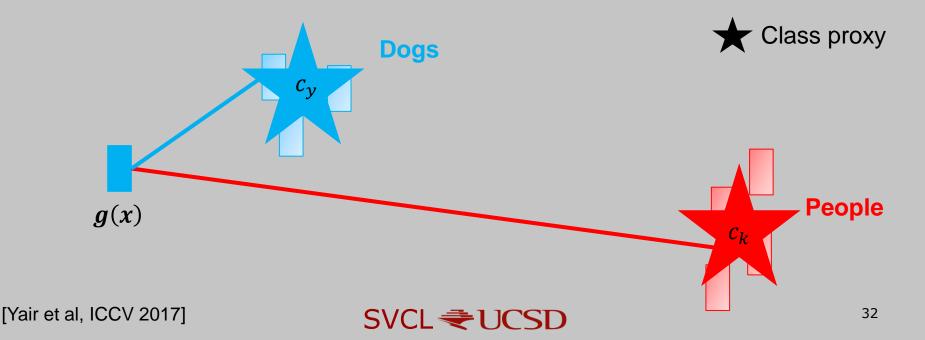
- Metric learning for retrieval task :
 - If there are *n* images in the dataset $\rightarrow O(n^3)$ triplets
 - Metric learning becomes a difficult problem as it is hard to converge



- Metric learning for retrieval task :
 - Yair et al. proposed to introduce a proxy for each class
 - Proxy serves as a concise representation of a class
 - Star c_y represents the dog class

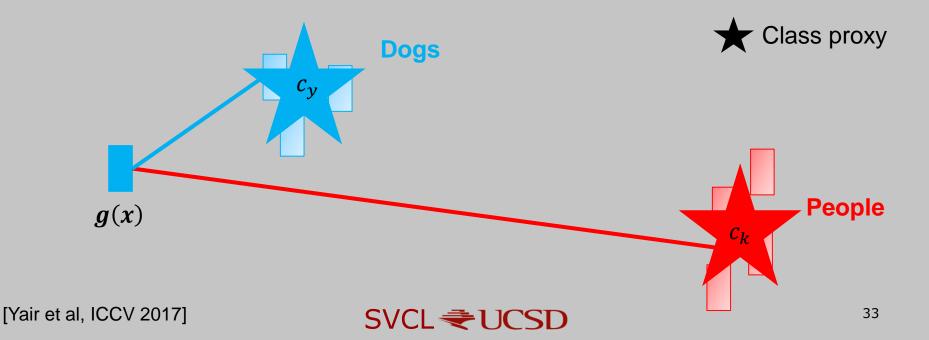


- Metric learning for retrieval task :
 - Yair et al. proposed to introduce a proxy for each class
 - Proxy serves as a concise representation of a class
 - Star c_y represents the dog class
 - No more triplets during training
 - Faster convergence

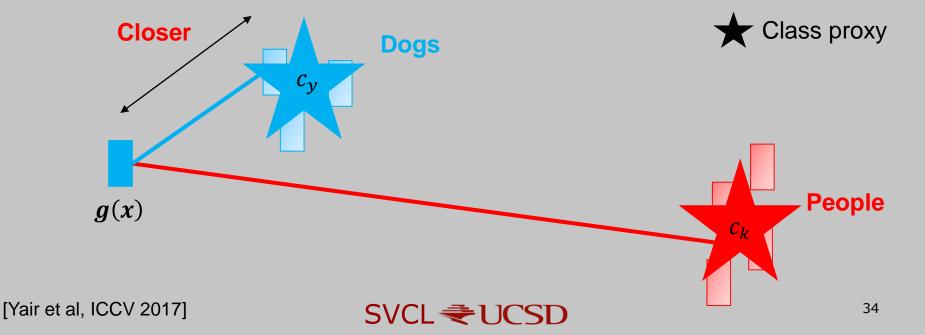


• Metric learning for retrieval task :

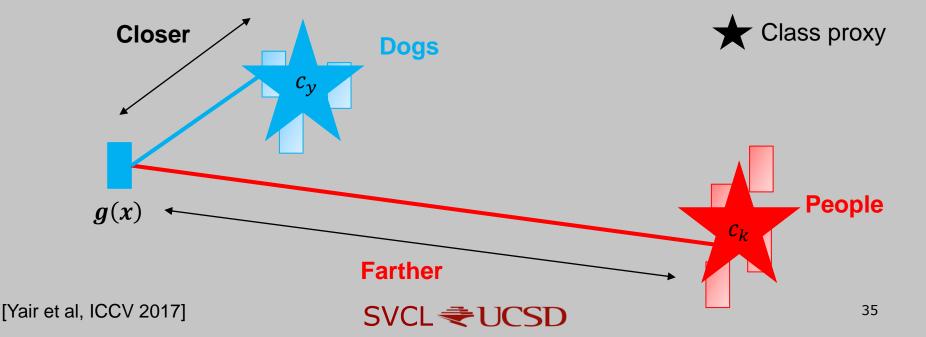
- Minimize proxy loss $L(x, \mathbf{C}) = \frac{e^{-d(g(x), c_y)}}{\sum_{k \neq y} e^{-d(g(x), c_k)}}$



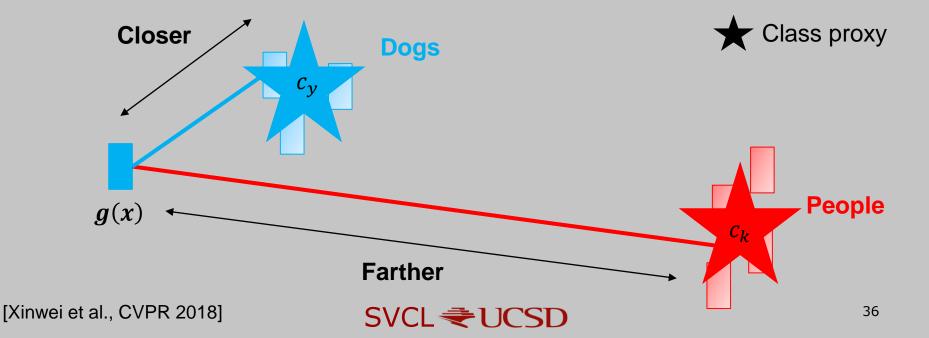
- Metric learning for retrieval task :
 - Minimize proxy loss $L(x, C) = \frac{e^{-d(g(x), c_y)}}{\sum_{k \neq y} e^{-d(g(x), c_k)}}$
 - Minimize distance of feature g(x) to its associated class proxy c_y



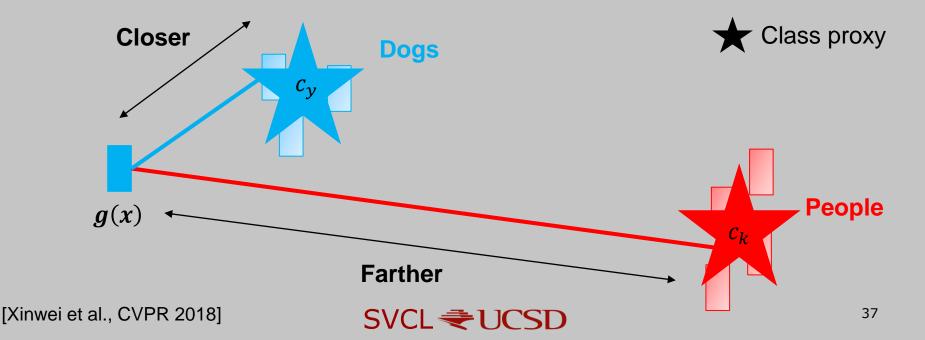
- Metric learning for retrieval task :
 - Minimize proxy loss $L(x, \mathbf{C}) = \frac{e^{-d(g(x), c_y)}}{\sum_{k \neq y} e^{-d(g(x), c_k)}}$
 - Minimize distance of feature g(x) to its associated class proxy c_y
 - Maximize distance of feature g(x) to other class proxies c_k



- Metric learning for retrieval task :
 - Xinwei et al. proposed triplet center loss by replacing triplets in triplet loss with proxies



- Metric learning for retrieval task :
 - Margin loss $\phi(v) = max(0, m v)$ with some margin m
 - Triplet loss $L(x, x^+, x^-) = \emptyset \left(d(g(x), g(x^-)) d(g(x), g(x^+)) \right)$

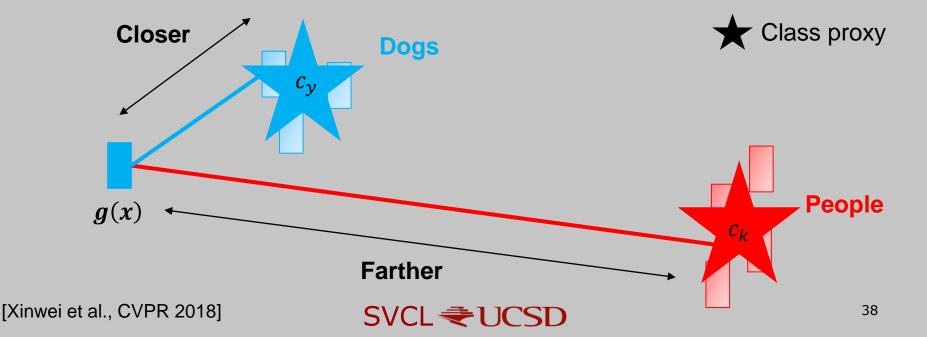


• Metric learning for retrieval task :

– Margin loss $\phi(v) = max(0, m - v)$ with some margin m

- Triplet loss $L(x, x^+, x^-) = \emptyset \left(d(g(x), g(x^-)) - d(g(x), g(x^+)) \right)$

- Triplet center loss $L(x, C) = \emptyset \left(\min_{k \neq y} d(g(x), c_k) - d(g(x), c_y) \right)$

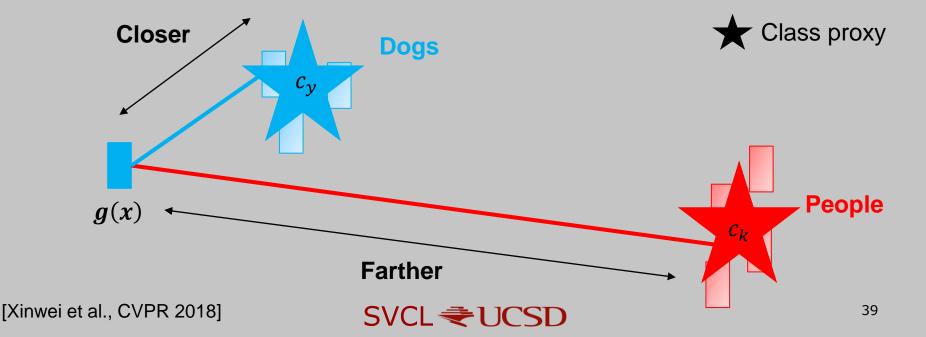


• Metric learning for retrieval task :

- Margin loss $\phi(v) = max(0, m - v)$ with some margin m

- Triplet loss
$$L(x, x^+, x^-) = \emptyset\left(d\left(g(x), g(x^-)\right) - d\left(g(x), g(x^+)\right)\right)$$

- Triplet center loss $L(x, \mathbf{C}) = \emptyset \left(\min_{k \neq y} d(g(x), c_k) - d(g(x), c_y) \right)$

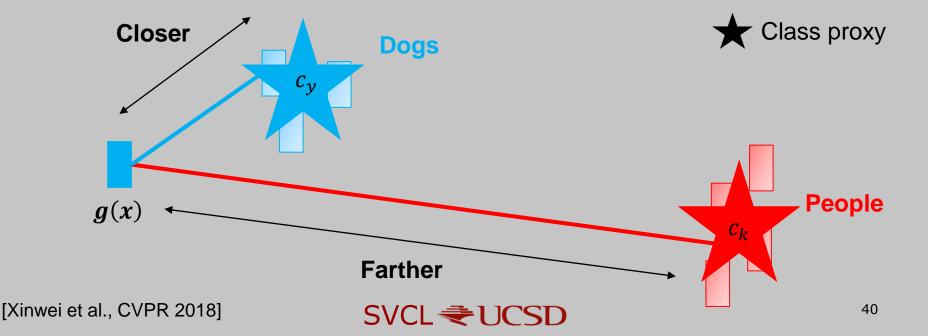


• Metric learning for retrieval task :

- Margin loss $\phi(v) = max(0, m - v)$ with some margin m

- Triplet loss $L(x, x^+, x^-) = \emptyset \left(d(g(x), g(x^-)) - d(g(x), g(x^+)) \right)$

- Triplet center loss $L(x, \mathbf{C}) = \emptyset \left(\min_{k \neq y} d(g(x), c_k) - d(g(x), c_y) \right)$



 Generating an embedding for different tasks is challenging

- Generating an embedding for different tasks is challenging
- Transformations make it more complicated

- Generating an embedding for different tasks is challenging
- Transformations make it more complicated
 - Lighting

SVCL ₹UCSD

- Generating an embedding for different task is challenging
- Transformations make it more complicated
 - Lighting
 - Viewpoint

SVCL ₹UCSD

- Generating an embedding for different task is challenging
- Transformations make it more complicated
 - Lighting
 - Viewpoint
 - Depth

SVCL ₹UCSD

- ImageNet pretrained classifier on a warplane
 - Unstable classification output
 - Not robust to transformations

- ImageNet pretrained classifier on a warplane
 - Unstable classification output
 - Not robust to transformations
- ImageNet
 - Lots of images per class
 - No dense viewpoints in dataset

- ImageNet pretrained classifier on a warplane
 - Unstable classification output
 - Not robust to transformations
- ImageNet
 - Lots of images per class
 - No dense viewpoints in dataset
- Difficult to collect multiview data in the real world

• Objects can be imaged from any viewpoint in synthetic graphic world

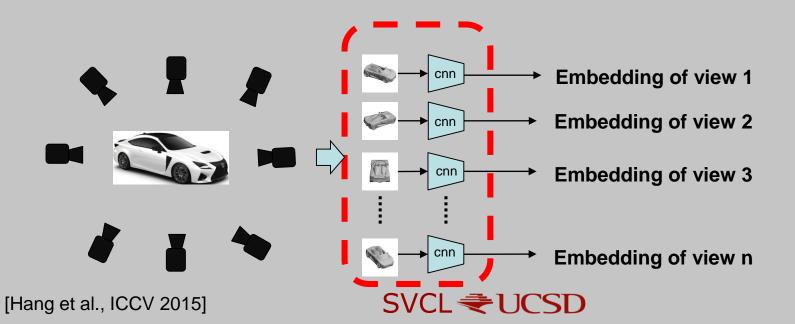
- Objects can be imaged from any viewpoint in synthetic graphic world
- Synthetic dataset
 - ModelNet
 - ShapeNet

[Wu et al., CVPR 2015] [Angel et al., ICCV 2017]

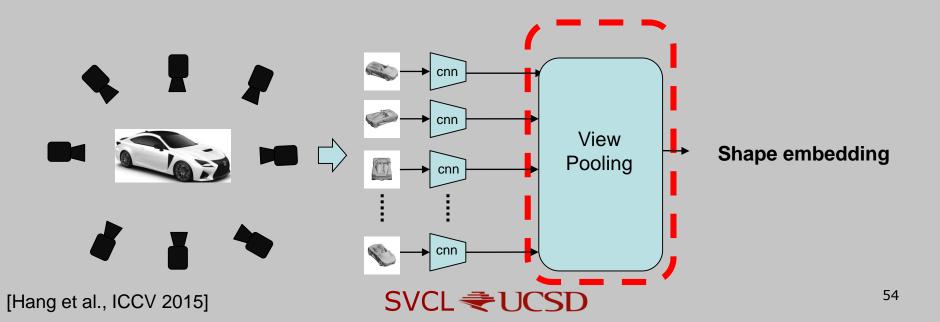
Synthetic data allows the study of 3D representation

- Synthetic data allows the study of 3D representation
- Hang et al. proposed multiview CNN (MVCNN)

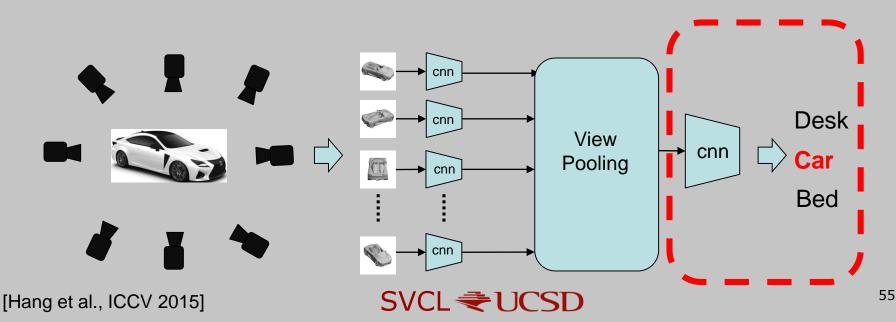
- Synthetic data allows the study of 3D representation
- Hang et al. proposed multiview CNN (MVCNN)
 - Extract embedding of each view with CNN



- Synthetic data allows the study of 3D representation
- Hang et al. proposed multiview CNN (MVCNN)
 - Extract embedding of each view with CNN
 - Aggregate multiple embeddings from different views to obtain shape embedding

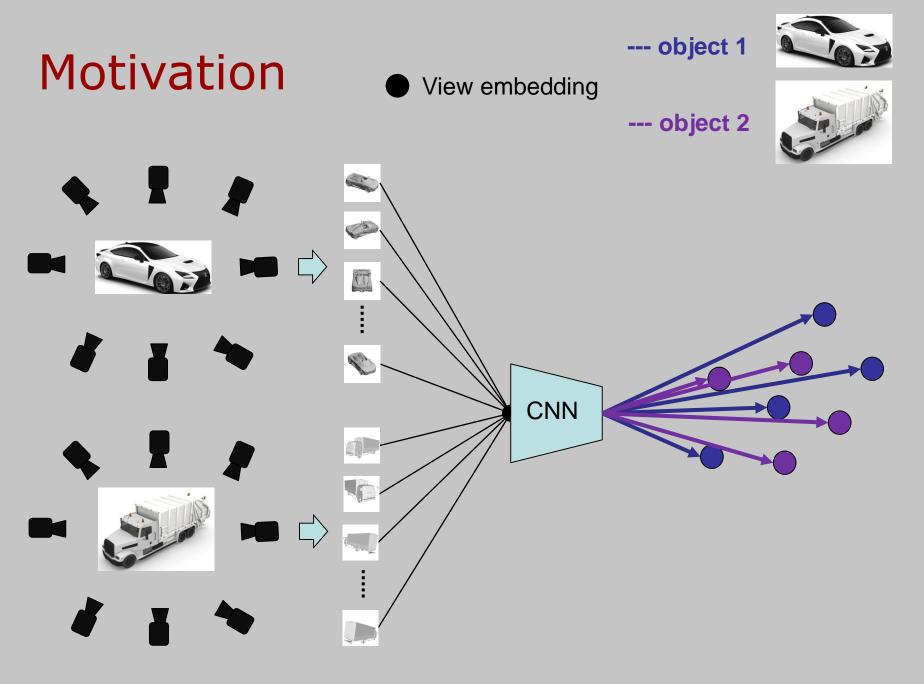


- Synthetic data allows the study of 3D representation
- Hang et al. proposed multiview CNN (MVCNN)
 - Extract embedding of each view with CNN
 - Aggregate multiple embeddings from different views to obtain shape embedding
 - Perform classification and retrieval tasks with the shape embedding



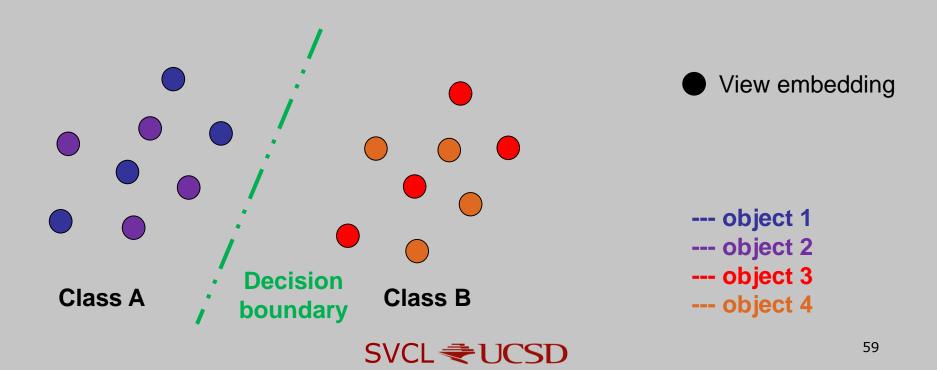
• MVCNN performs better then simply averaging multiple predictions of CNN

- MVCNN performs better then simply averaging multiple predictions of CNN
- Single view representation (e.g CNN)
 - Better on single view tasks using view embedding
 - No information about relationship between view embeddings from same object

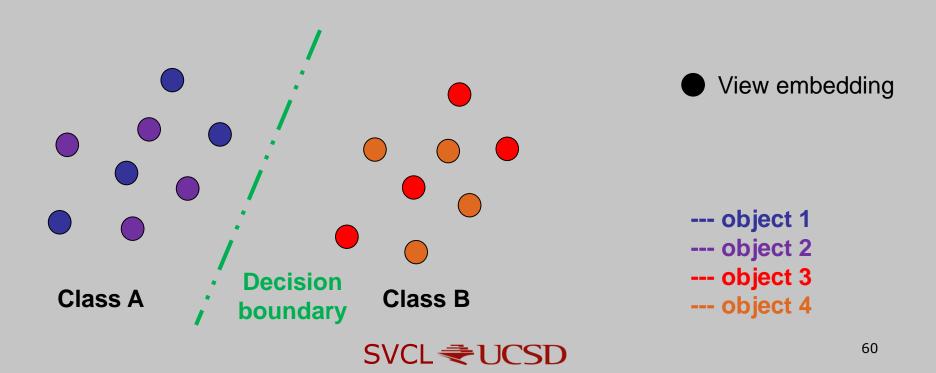


SV	CL	 U	CS	D
—		\sim		

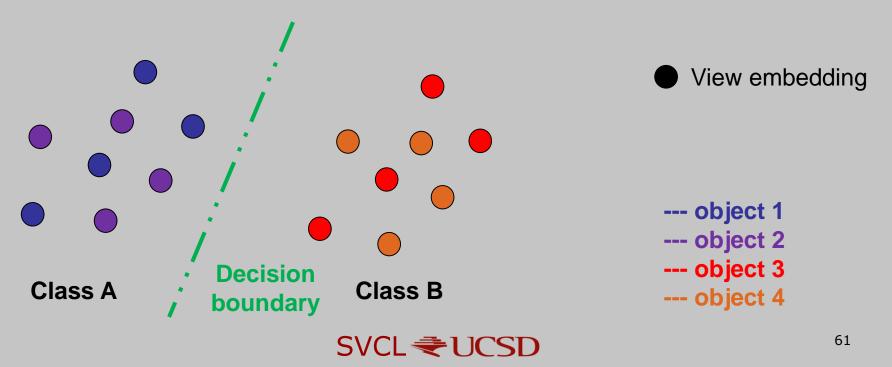
- Single view representation (e.g CNN)
 - Configuration of view embeddings for 4 objects in 2 classes



- Single view representation (e.g CNN)
 - Configuration of view embeddings for 4 objects in 2 classes
 - Embeddings of images from different objects but same class can interleave with each other



- Single view representation (e.g CNN)
 - Configuration of view embeddings for 4 objects in 2 classes
 - Embeddings of images from different objects but same class can interleave with each other
 - Not a good embedding for tasks such as retrieving other views from same object

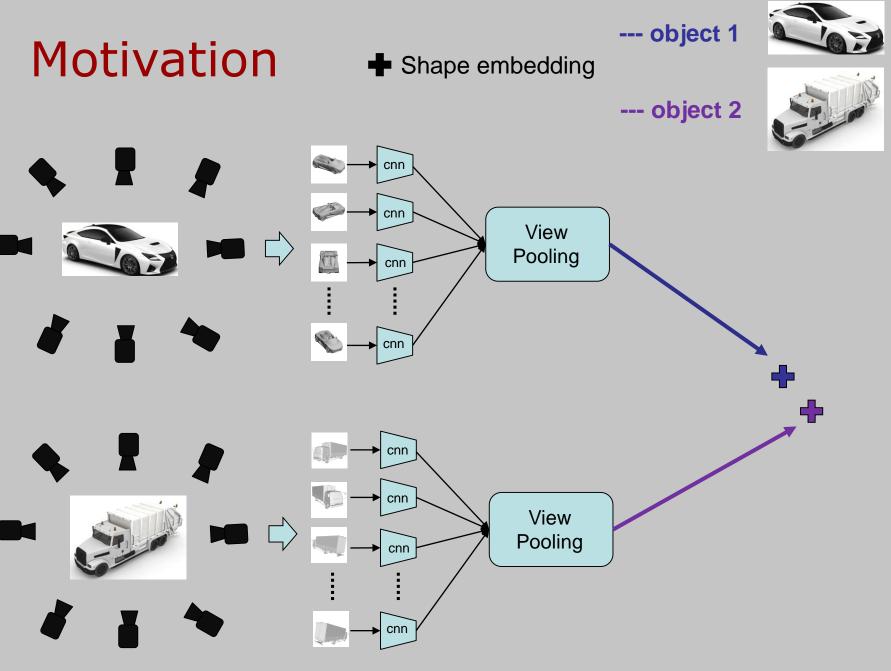


- Multiview representation (e.g MVCNN)
 - Multiview representation is better on multiview tasks using shape embedding

- Multiview representation (e.g MVCNN)
 - Multiview representation is better on multiview tasks using shape embedding
 - Shape embedding is an invariant representation of an object

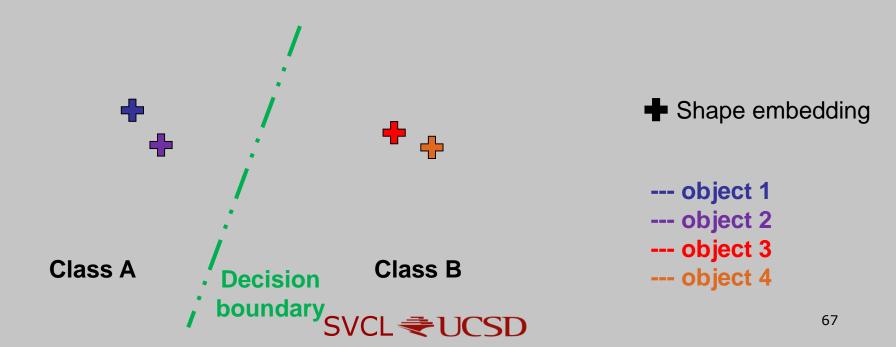
- Multiview representation (e.g MVCNN)
 - Multiview representation is better on multiview tasks using shape embedding
 - Shape embedding is an invariant representation of an object
 - But worse on single view task

- Multiview representation (e.g MVCNN)
 - Multiview representation is better on multiview tasks using shape embedding
 - Shape embedding is an invariant representation of an object
 - But worse on single view task
 - Multiview representation has no constraint between view embeddings of same object

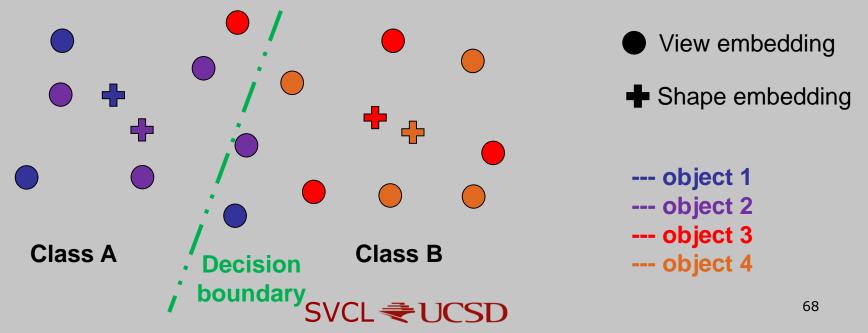


SV	Cl	. 🔶	U	CS	D

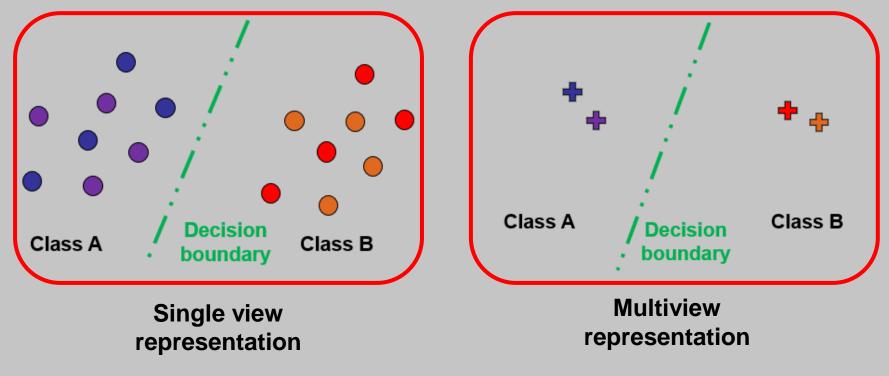
- Multiview representation (e.g MVCNN)
 - Multiview representation has no constraint between view embeddings of same object
 - Configuration of shape embeddings for 4 objects in 2 classes
 - All shape embeddings are within decision boundary



- Multiview representation (e.g MVCNN)
 - Multiview representation has no constraint between view embeddings of same object
 - Configuration of shape embeddings for 4 objects in 2 classes
 - All shape embeddings are within decision boundary
 - No guarantee that view embedding will be inside the decision boundary

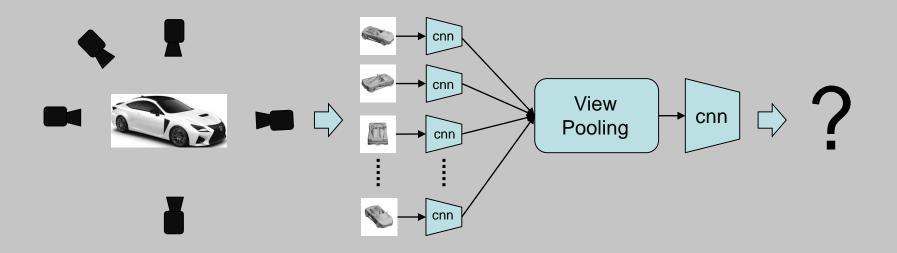


 Both single view and multiview representation have its drawback



SVCL 🗢 UCSD

- Both single view and multiview representation have its drawback
- What if only partial views are given?

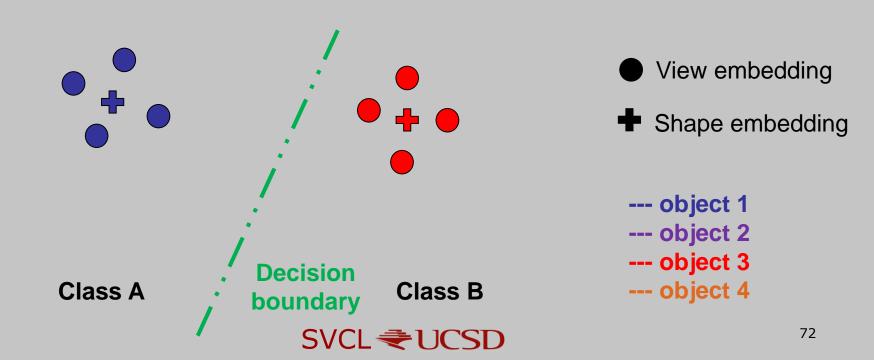


Proposed architecture

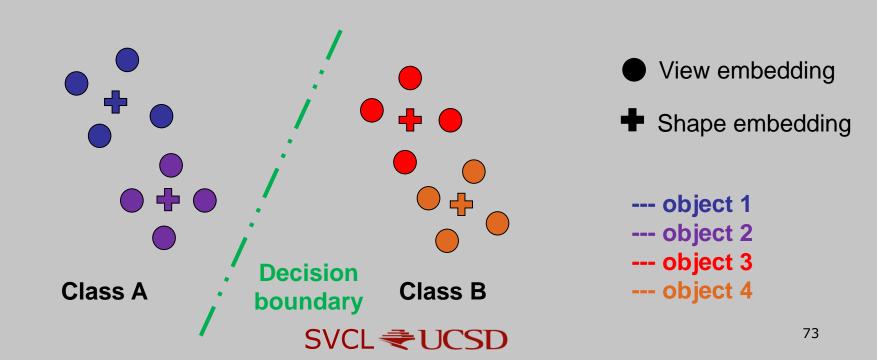
• Pose invariant embedding (PIE) is proposed

Proposed architecture

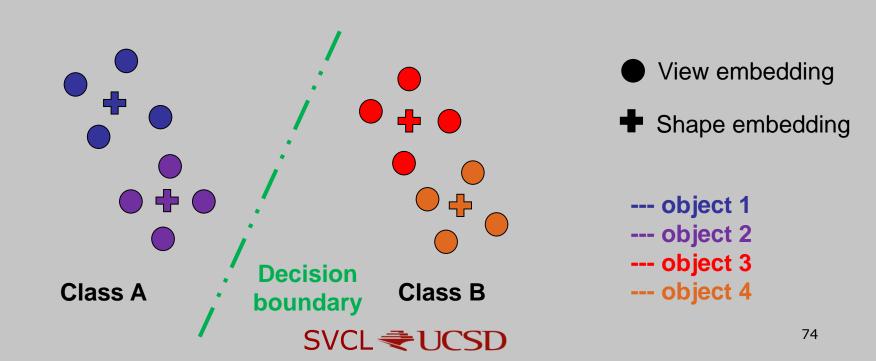
- Pose invariant embedding (PIE) is proposed
 - Different views from same object close to each other



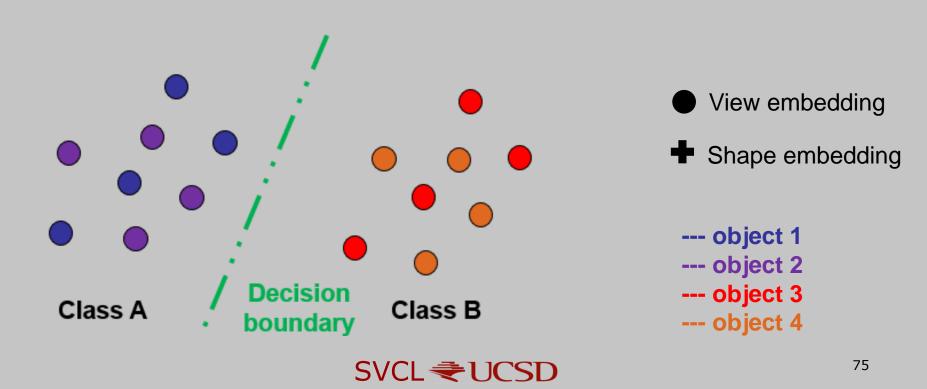
- Pose invariant embedding (PIE) is proposed
 - Different views from same object close to each other
 - Different objects from same class close to each other



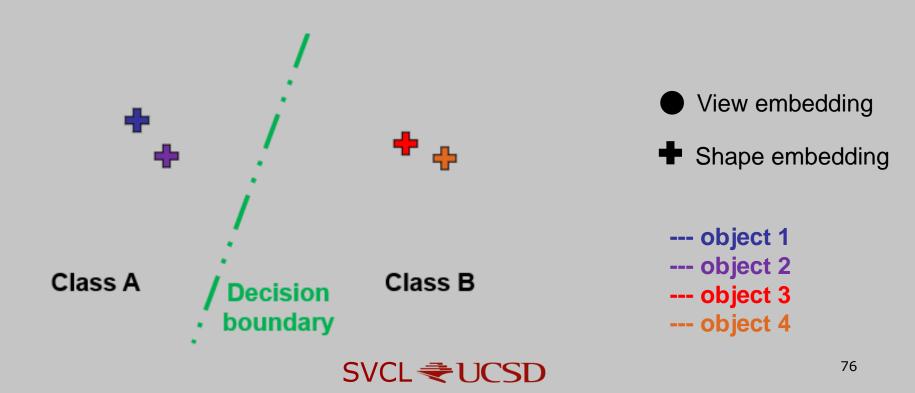
- Pose invariant embedding (PIE) is proposed
 - Different views from same object close to each other
 - Different objects from same class close to each other
- More robust to both multiview and single view inference



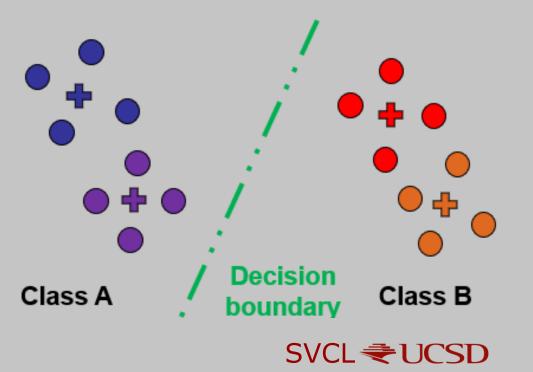
- Define y as class label, v as view and s as shape
- Probabilistic formulation
 - Single View: $P_{Y|V}(y|v)$



- Define y as class label, v as view and s as shape
- Probabilistic formulation
 - Single View: $P_{Y|V}(y|v)$
 - Multiview: $P_{Y|S}(y|s)$

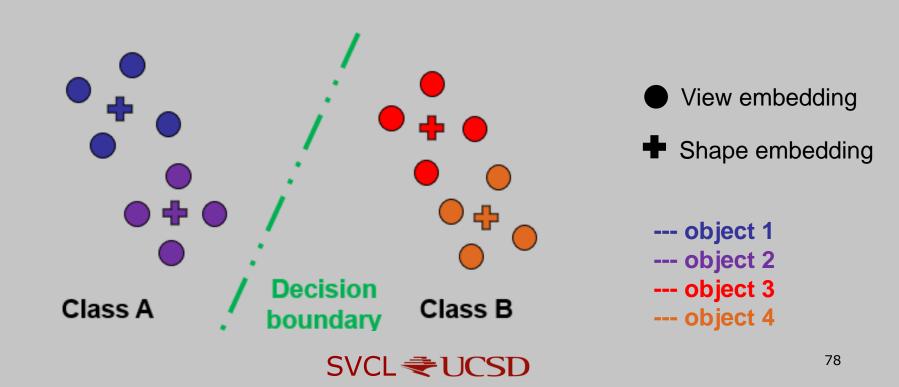


- Define y as class label, v as view and s as shape
- Probabilistic formulation
 - Single View: $P_{Y|V}(y|v)$
 - Multiview: $P_{Y|S}(y|s)$
 - PIE: $P_{Y|V}(y|v) = \sum_{s} P_{Y|S,V}(y|s,v) P_{S|V}(s|v)$

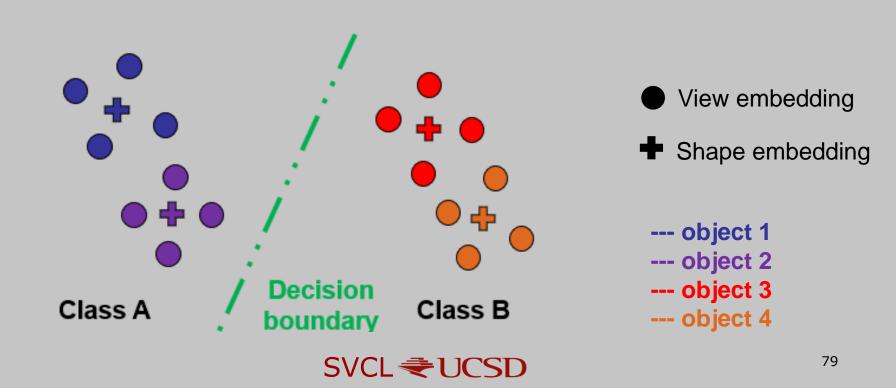


- View embedding
- Shape embedding
- --- object 1
- --- object 2
- --- object 3
- --- object 4

 Shape embedding is an invariant representation of an object

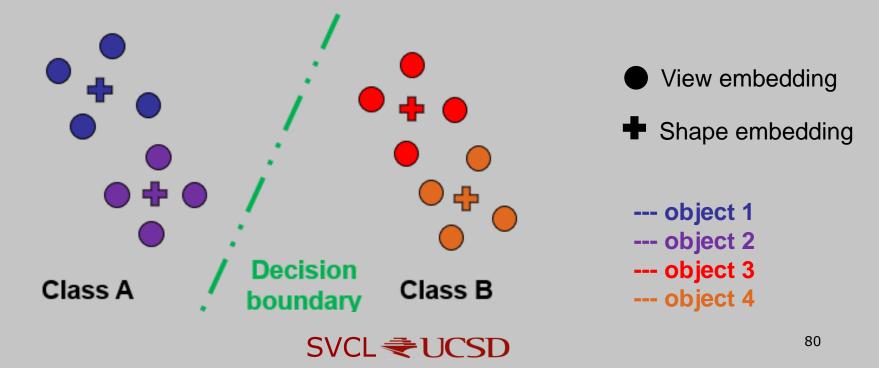


- Shape embedding is an invariant representation of an object
- Given the object is known, class is independent of view



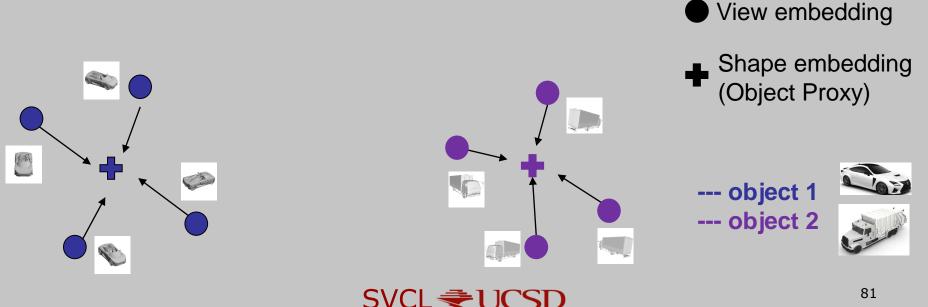
- Shape embedding is an invariant representation of an object
- Given the object is known, class is independent of view

- PIE: $P_{Y|V}(y|v) = \sum_{s} P_{Y|S,V}(y|s,v) P_{S|V}(s|v) = \sum_{s} P_{Y|S}(y|s) P_{S|V}(s|v)$



- Hierarchical models
 - View to object model
 - Shape embedding is used for object proxy
 - Make view embedding close to the associated object proxy

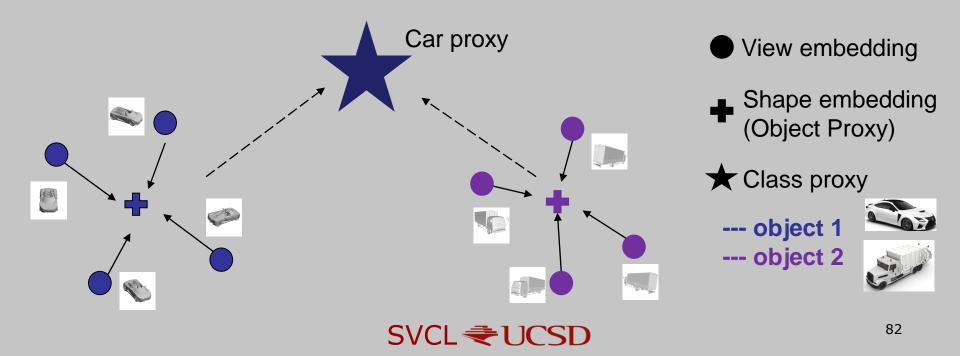
 $P_{Y|V}(y|v) = \sum_{s} P_{Y|s}(y|s) P_{S|V}(s|v)$



- Hierarchical models
 - View to object model
 - Shape embedding is used for object proxy
 - Make view embedding close to the associated object proxy

 $P_{Y|V}(y|v) = \sum_{s} P_{Y|s}(y|s) P_{S|V}(s|v)$

- Object to class model
 - Make object proxy close to the associated class proxy



- Define y as class, v as view, s as shape and cy as class proxy
- Pose invariant distance

 $-d^{inv}(v,s,c_y) = \alpha * d(v,s) + \beta * d(s,c_y)$

- Define y as class, v as view, s as shape and c_y as class proxy
- Pose invariant distance

 $-d^{inv}(v,s,c_y) = \alpha * d(v,s) + \beta * d(s,c_y)$

- Take proxy based method for example
 - Single view representation

• Loss = $\frac{\exp(-d(v,c_y))}{\sum_{i\neq y} \exp(-d(v,c_i))}$

- Define y as class, v as view, s as shape and c_y as class proxy
- Pose invariant distance

$$- d^{inv}(v,s,c_y) = \alpha * d(v,s) + \beta * d(s,c_y)$$

- Take proxy based method for example
 - Single view representation

• Loss =
$$\frac{\exp(-d(v,c_y))}{\sum_{i\neq y} \exp(-d(v,c_i))}$$

- Multiview representation

• Loss =
$$\frac{\exp(-d(s,c_y))}{\sum_{i\neq y} \exp(-d(s,c_i))}$$

- Define y as class, v as view, s as shape and c_y as class proxy
- Pose invariant distance

$$- d^{inv}(v,s,c_y) = \alpha * d(v,s) + \beta * d(s,c_y)$$

- Take proxy based method for example
 - Single view representation

• Loss =
$$\frac{\exp(-d(v,c_y))}{\sum_{i \neq y} \exp(-d(v,c_i))}$$

- Multiview representation

• Loss =
$$\frac{\exp(-d(s,c_y))}{\sum_{i\neq y} \exp(-d(s,c_i))}$$

– PIE

• Loss =
$$\frac{\exp(-d^{inv}(v,s,c_y))}{\sum_{i\neq y} \exp(-d^{inv}(v,s,c_i))}$$

- Define y as class, v as view, s as shape and c_y as class proxy
- Pose invariant distance

$$- d^{inv}(v,s,c_y) = \alpha * d(v,s) + \beta * d(s,c_y)$$

- Take proxy based method for example
 - Single view representation

• Loss =
$$\frac{\exp(-d(v,c_y))}{\sum_{i\neq y} \exp(-d(v,c_i))}$$

- Multiview representation

• Loss =
$$\frac{\exp(-d(s,c_y))}{\sum_{i\neq y} \exp(-d(s,c_i))}$$

PIE
• Loss = $\frac{\exp(-d^{inv}(v,s,c_y))}{\sum_{i\neq y} \exp(-d^{inv}(v,s,c_i))}$

SVCL **₹**UCS

• The proposed idea can be incorporated with different training approaches

– Proxy

	Representation		
	Single view	Multiview	PIE
Proxy	Existed	Missing	Proposing

SVCL 🗢 UCSD

- The proposed idea can be incorporated with different training approaches
 - Proxy
 - CNN

	Representation		
	Single view	Multiview	PIE
Proxy	Existed	Missing	Proposing
CNN	Existed	Existed	Proposing

- The proposed idea can be incorporated with different training approaches
 - Proxy
 - CNN
 - Triplet Center

	Representation		
	Single view	Multiview	PIE
Proxy	Existed	Missing	Proposing
CNN	Existed	Existed	Proposing
Triplet Center	Missing	Existed	Proposing

SVCL ₹UCSD

- The proposed idea can be incorporated with different training approaches
 - Proxy
 - CNN
 - Triplet Center
- Taxonomy of embedding
 - Some missing approaches in the literature are found

	Representation				
	Single view	Multiview	PIE		
Proxy	Existed	Missing	Proposing		
CNN	Existed	Existed	Proposing		
Triplet Center	Missing	Existed	Proposing		
Taxonomy of embedding					
SVCL ₹ UCSD					

- 5 different tasks are evaluated
 - Classification:
 - Single view classification



View 1 of car model 1

- 5 different tasks are evaluated
 - Classification:
 - Single view classification
 - Multiview classification

- 5 different tasks are evaluated
 - Classification:
 - Single view classification
 - Multiview classification
 - Retrieval:
 - Single view object retrieval

SVCL ₹UCSD

94

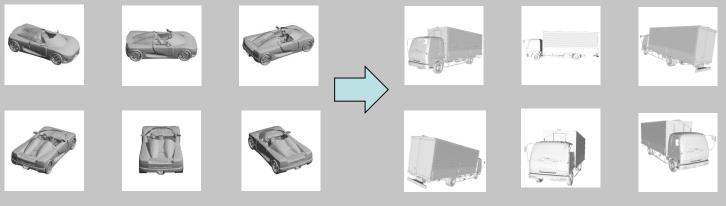
- 5 different tasks are evaluated
 - Classification:
 - Single view classification
 - Multiview classification
 - Retrieval:
 - Single view object retrieval
 - Single view class retrieval

Other views of various cars

View 1 of car model 1

SVCL ₹UCSD

- 5 different tasks are evaluated
 - Classification:
 - Single view classification
 - Multiview classification
 - Retrieval:
 - Single view object retrieval
 - Single view class retrieval
 - Multiview class retrieval

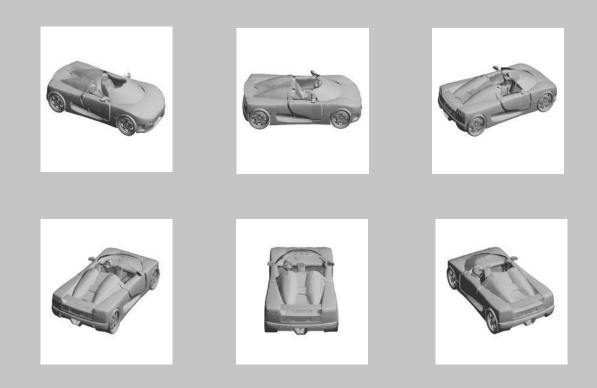


SVCL ₹UCSD

Car model 1

Car model 2

- 3 different datasets are evaluated
 - ModelNet



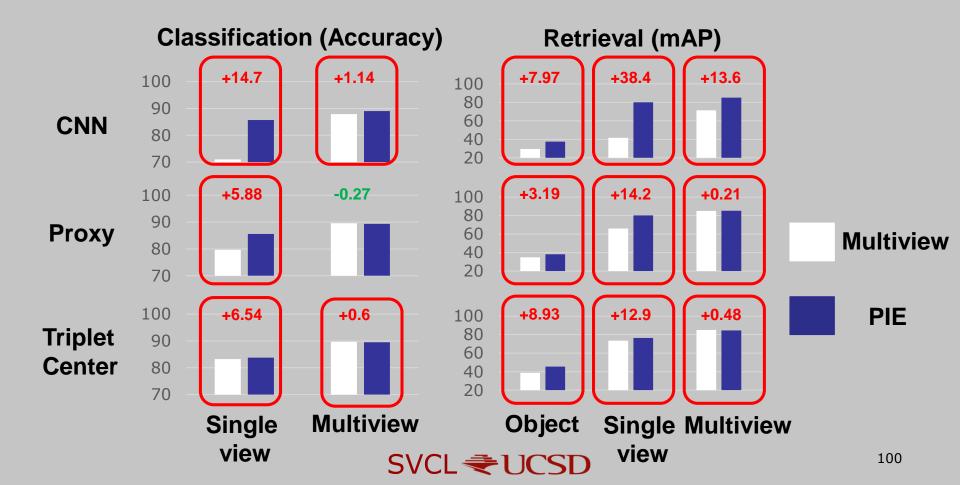
[Wu et al., CVPR 2015]

- 3 different datasets are evaluated
 - ModelNet
 - MIRO

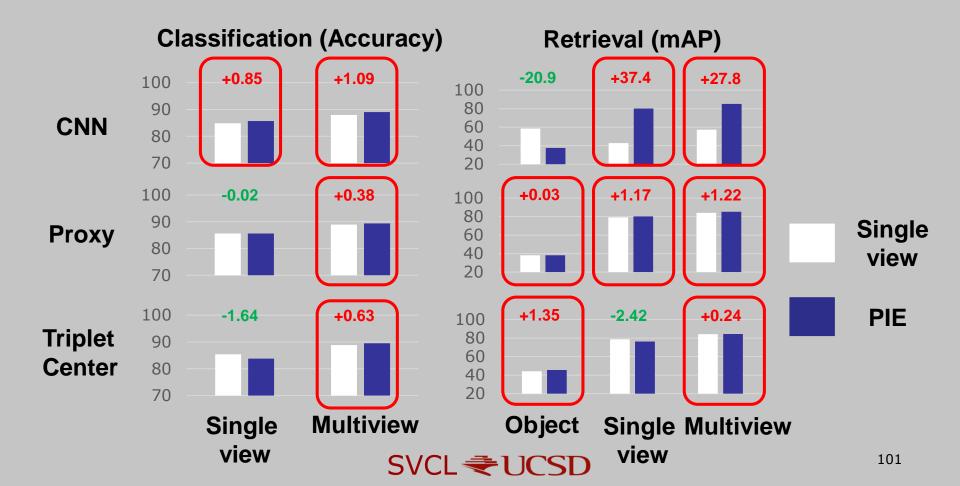
- 3 different datasets are evaluated
 - ModelNet
 - MIRO
 - ObjectPI
 - 500 objects

SVCL **₹**UCSD

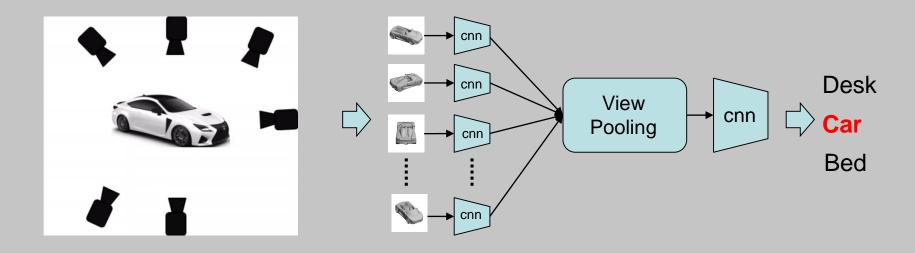
• PIEs wins multiview representation on 14 of the 15 results (5 tasks x 3 approaches) on ModelNet



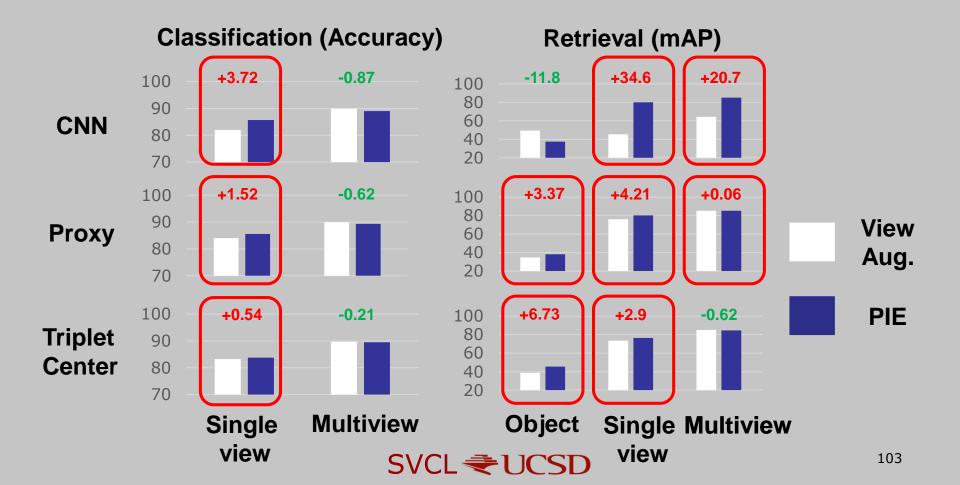
• PIEs wins single view representation on 11 of the 15 results (5 tasks x 3 approaches) on ModelNet



- Training with view augmentation
 - Different number of views are provided to classifier

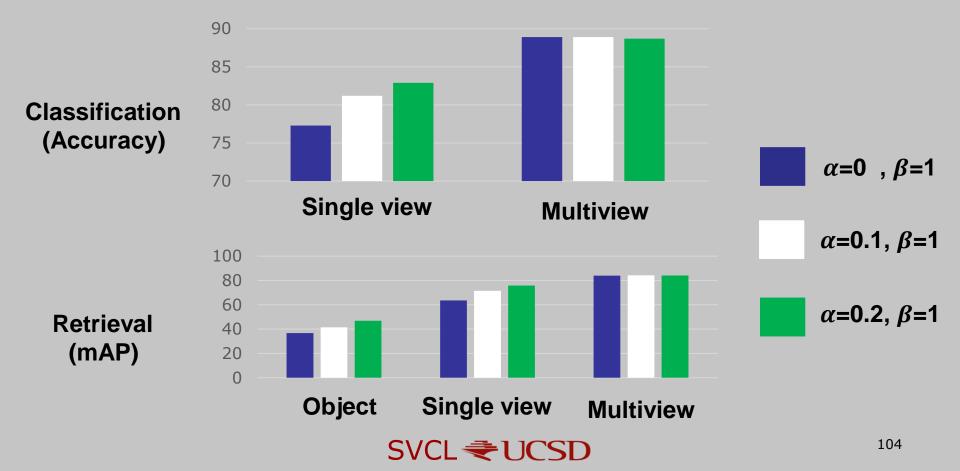


• PIEs wins view augmentation training on 10 of the 15 results (5 tasks x 3 approaches) on ModelNet



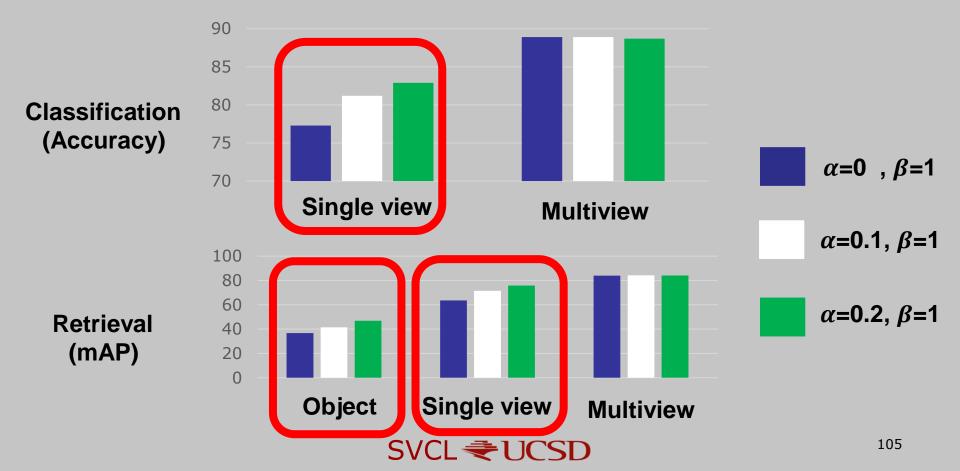
Experiment $d^{inv}(v, s, c_y) = \alpha * d(v, s) + \beta * d(s, c_y)$

- Ablation study of pose invariant distance
 - As α increase, results of single view tasks become better
 - As α increase, results of multiview tasks become worse



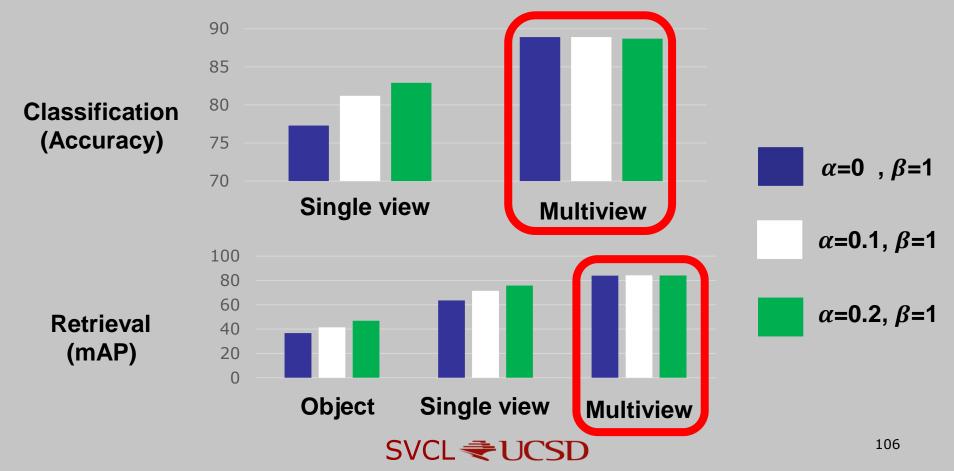
Experiment $d^{inv}(v, s, c_y) = \alpha * d(v, s) + \beta * d(s, c_y)$

- Ablation study of pose invariant distance
 - As α increase, results of single view tasks become better
 - As α increase, results of multiview tasks become worse

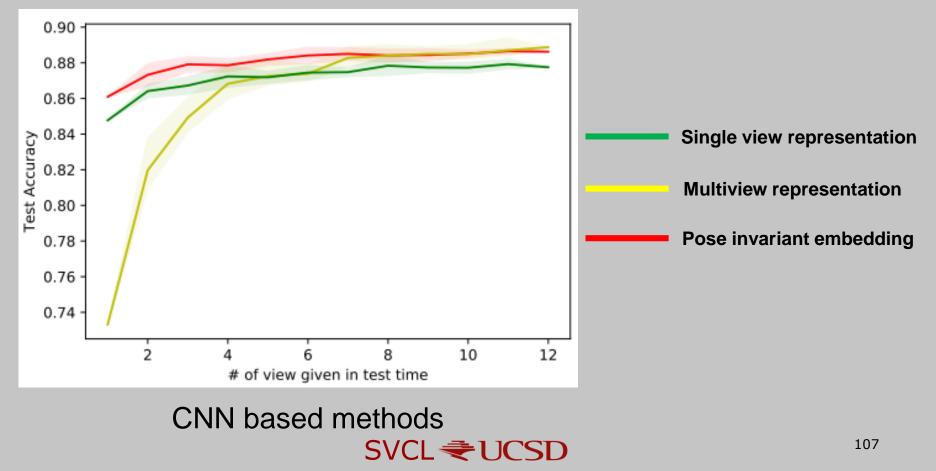


Experiment $d^{inv}(v, s, c_y) = \alpha * d(v, s) + \beta * d(s, c_y)$

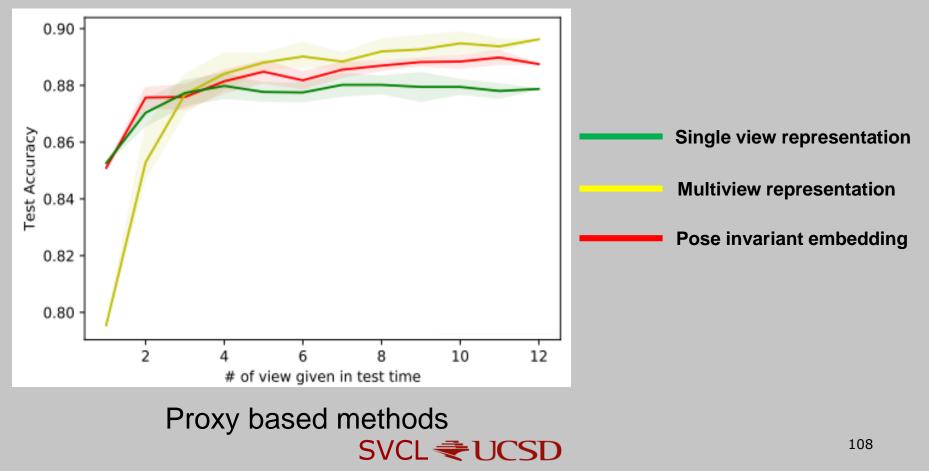
- Ablation study of pose invariant distance
 - As α increase, results of single view tasks become better
 - As α increase, results of multiview tasks become worse



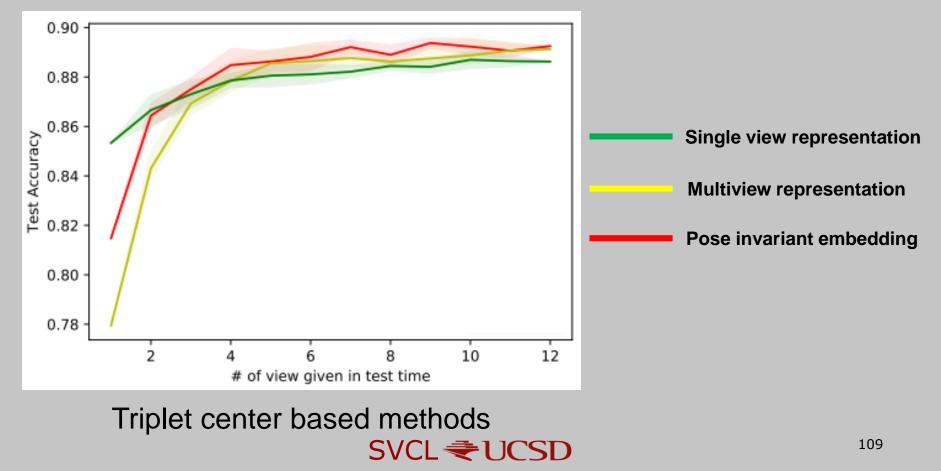
- Classification accuracy to number of views provided during inference time
 - PIE is more robust to the number of views provided



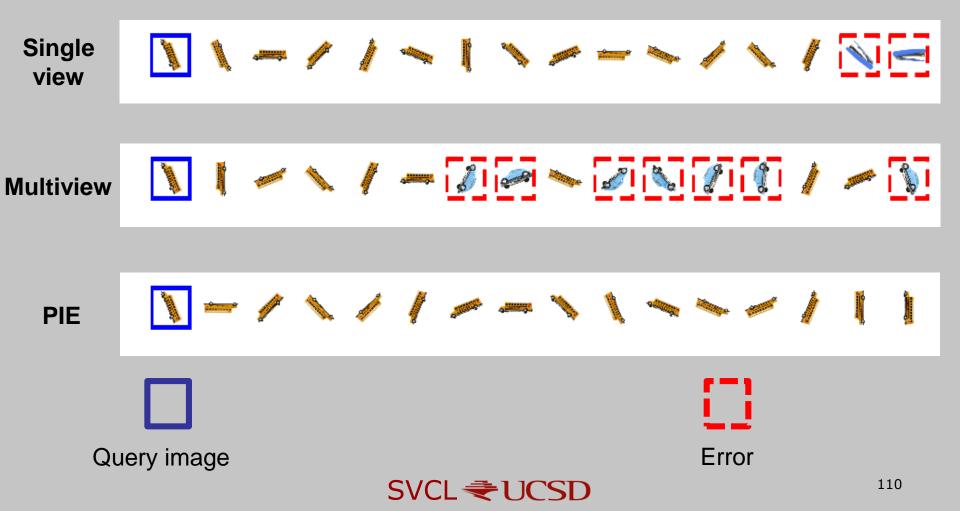
- Classification accuracy to number of views provided during inference time
 - PIE is more robust to the number of views provided



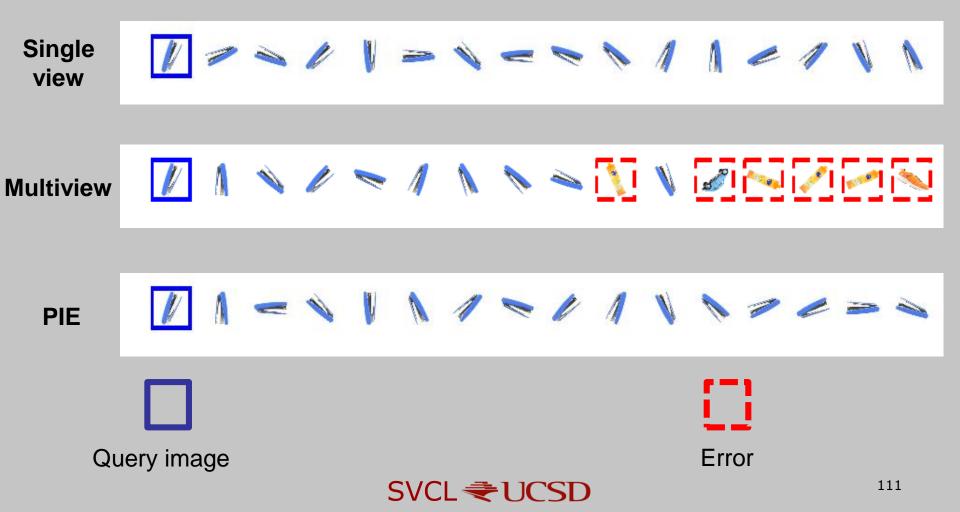
- Classification accuracy to number of views provided during inference time
 - PIE is more robust to the number of views provided



 Retrieval results using CNN based embeddings on MIRO dataset



 Retrieval results using CNN based embeddings on MIRO dataset



 Propose a taxonomy of embeddings that connects different metric learning approaches

- Propose a taxonomy of embeddings that connects different metric learning approaches
- Introduce pose invariant embedding (PIE) that can be applied to existing approaches

- Propose a taxonomy of embeddings that connects different metric learning approaches
- Introduce pose invariant embedding (PIE) that can be applied to existing approaches
- PIE is a hierarchical model
 - View to object
 - Object to class

- Propose a taxonomy of embeddings that connects different metric learning approaches
- Introduce pose invariant embedding (PIE) that can be applied to existing approaches
- PIE is a hierarchical model
 - View to object
 - Object to class
- Demonstrate the robustness of PIEs on
 - Classification and retrieval tasks
 - Single view and multiview inference

- Propose a taxonomy of embeddings that connects different metric learning approaches
- Introduce pose invariant embedding (PIE) that can be applied to existing approaches
- PIE is a hierarchical model
 - View to object
 - Object to class
- Demonstrate the robustness of PIEs on
 - Classification and retrieval tasks
 - Single view and multiview inference
- Propose a multiview dataset with real objects imaged under complex backgrounds

Publication

• PIEs: Pose Invariant Embeddings

- <u>Chih-Hui Ho</u>, <u>Pedro Morgado</u>, <u>Amir Persekian</u>, <u>Nuno Vasconcelos</u> In, *IEEE* Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, June 2019
- Catastrophic Child 's Play: Easy to Perform, Hard to Defend Adversarial Attacks
 - <u>Chih-Hui Ho*</u>, <u>Brandon Leung*</u>, <u>Erik Sandstrom</u>, <u>Yen Chang</u>, <u>Nuno Vasconcelos</u> In, *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Long Beach, June 2019

